Xiaoyun Ye, Liangqing Zhu, Jun Shao, Rui Hu, Liyan Shang, Xiren Chen, Yawei Li, Jinzhong Zhang, Kai Jiang, Junhao Chu, Zhigao Hu
{"title":"The band structure and carrier recombination mechanism of α/β-phase tellurium homojunction investigated by infrared photoluminescence","authors":"Xiaoyun Ye, Liangqing Zhu, Jun Shao, Rui Hu, Liyan Shang, Xiren Chen, Yawei Li, Jinzhong Zhang, Kai Jiang, Junhao Chu, Zhigao Hu","doi":"10.1063/5.0245121","DOIUrl":null,"url":null,"abstract":"During the synthesis of tellurium (Te) crystals, the coexistence of multiple crystalline phases (α-Te, β-Te, and γ-Te) with diverse structures commonly occurs, leading to instability and complexity in the performance of Te-based optoelectronic devices. This study employs physical vapor deposition to synthesize Te crystals of various sizes and morphologies, followed by spatially and temperature-dependent evaluation using Raman mapping and infrared photoluminescence (PL) spectroscopy. Spatially resolved results reveal that the size and morphology of Te crystals significantly influence the energy and peak profiles of Raman and PL spectra. Statistical analysis of spatially random sampling indicates the PL peak energies of Te crystals follow a lognormal distribution in terms of their occurrence frequencies, reflecting the complex interplay of multiple factors during crystal growth. This results in the coexistence of α-Te and β-Te phases, forming α/β-Te heterophase homojunction (HPHJ). Meanwhile, temperature-dependent PL results, obtained for the range of 3–290 K, reveal multi-peak competitive behavior in the PL spectra, accompanied by S-shaped shifts in peak energy. These features can be rationally explained by an interface transition-recombination mechanism based on the I-type α/β-Te HPHJ model. It also confirms infrared PL spectroscopy is an effective method for identifying the crystalline phase composition of Te crystals.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"23 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0245121","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
During the synthesis of tellurium (Te) crystals, the coexistence of multiple crystalline phases (α-Te, β-Te, and γ-Te) with diverse structures commonly occurs, leading to instability and complexity in the performance of Te-based optoelectronic devices. This study employs physical vapor deposition to synthesize Te crystals of various sizes and morphologies, followed by spatially and temperature-dependent evaluation using Raman mapping and infrared photoluminescence (PL) spectroscopy. Spatially resolved results reveal that the size and morphology of Te crystals significantly influence the energy and peak profiles of Raman and PL spectra. Statistical analysis of spatially random sampling indicates the PL peak energies of Te crystals follow a lognormal distribution in terms of their occurrence frequencies, reflecting the complex interplay of multiple factors during crystal growth. This results in the coexistence of α-Te and β-Te phases, forming α/β-Te heterophase homojunction (HPHJ). Meanwhile, temperature-dependent PL results, obtained for the range of 3–290 K, reveal multi-peak competitive behavior in the PL spectra, accompanied by S-shaped shifts in peak energy. These features can be rationally explained by an interface transition-recombination mechanism based on the I-type α/β-Te HPHJ model. It also confirms infrared PL spectroscopy is an effective method for identifying the crystalline phase composition of Te crystals.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.