Non-destructive degradation pattern decoupling for early battery trajectory prediction via physics-informed learning

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shengyu Tao, Mengtian Zhang, Zixi Zhao, Haoyang Li, Ruifei Ma, Yunhong Che, Xin Sun, Lin Su, Chongbo Sun, Xiangyu Chen, Heng Chang, Shiji Zhou, Zepeng Li, Hanyang Lin, Yaojun Liu, Wenjun Yu, Zhongling Xu, Han Hao, Scott Moura, Xuan Zhang, Yang Li, Xiaosong Hu, Guangmin Zhou
{"title":"Non-destructive degradation pattern decoupling for early battery trajectory prediction via physics-informed learning","authors":"Shengyu Tao, Mengtian Zhang, Zixi Zhao, Haoyang Li, Ruifei Ma, Yunhong Che, Xin Sun, Lin Su, Chongbo Sun, Xiangyu Chen, Heng Chang, Shiji Zhou, Zepeng Li, Hanyang Lin, Yaojun Liu, Wenjun Yu, Zhongling Xu, Han Hao, Scott Moura, Xuan Zhang, Yang Li, Xiaosong Hu, Guangmin Zhou","doi":"10.1039/d4ee03839h","DOIUrl":null,"url":null,"abstract":"Manufacturing complexities and uncertainties have impeded the transition from material prototypes to commercial batteries, making their verification a critical quality assessment link. A fundamental challenge is to decouple electrochemical interactions for establishing a quantitative mapping from electrochemical parameters to macro battery performance. Here, we show that the proposed physics-informed learning model can quantify and visualize temporally resolved thermodynamic and kinetic parameters from field accessible electric signals, facilitating a non-destructive degradation pattern decoupling. The lifetime trajectory prediction is 25 times faster than the traditional capacity calibration test while retaining a 95.1% average accuracy across temperatures, underpinned by projected electrochemical data from early cycle observations which have not yet been established. We rationalize this predictability to the interpretation of statistical insights from material-agnostic featurization, excited by a multistep charging scheme with different current intensities and their switching conditions. The waste management of defective prototypes is enabled by statistically and non-destructively interpreting internal electrochemical states, demonstrating a 19.76 billion USD defective material recycling market by 2060. This paper highlights the potential of revisiting electrochemical degradation behaviors using physics-informed learning and dynamic current excitations, facilitating next-generation battery manufacturing, reuse, and recycling sustainability.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"6 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee03839h","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Manufacturing complexities and uncertainties have impeded the transition from material prototypes to commercial batteries, making their verification a critical quality assessment link. A fundamental challenge is to decouple electrochemical interactions for establishing a quantitative mapping from electrochemical parameters to macro battery performance. Here, we show that the proposed physics-informed learning model can quantify and visualize temporally resolved thermodynamic and kinetic parameters from field accessible electric signals, facilitating a non-destructive degradation pattern decoupling. The lifetime trajectory prediction is 25 times faster than the traditional capacity calibration test while retaining a 95.1% average accuracy across temperatures, underpinned by projected electrochemical data from early cycle observations which have not yet been established. We rationalize this predictability to the interpretation of statistical insights from material-agnostic featurization, excited by a multistep charging scheme with different current intensities and their switching conditions. The waste management of defective prototypes is enabled by statistically and non-destructively interpreting internal electrochemical states, demonstrating a 19.76 billion USD defective material recycling market by 2060. This paper highlights the potential of revisiting electrochemical degradation behaviors using physics-informed learning and dynamic current excitations, facilitating next-generation battery manufacturing, reuse, and recycling sustainability.

Abstract Image

通过物理信息学习进行非破坏性降解模式解耦,实现早期电池轨迹预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信