A Lewis basic site rich metal–organic framework featuring a hydrogen-bonded acetylene nano-trap for the efficient separation of C2H2/CO2

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Mengyue Lu, Zhiwei Zhao, Yuhao Tang, Yating Wang, Feifei Zhang, Jinping Li, Jiangfeng Yang
{"title":"A Lewis basic site rich metal–organic framework featuring a hydrogen-bonded acetylene nano-trap for the efficient separation of C2H2/CO2","authors":"Mengyue Lu, Zhiwei Zhao, Yuhao Tang, Yating Wang, Feifei Zhang, Jinping Li, Jiangfeng Yang","doi":"10.1039/d4dt03411b","DOIUrl":null,"url":null,"abstract":"The physical separation of C<small><sub>2</sub></small>H<small><sub>2</sub></small> from CO<small><sub>2</sub></small> on metal–organic frameworks (MOFs) has received a substantial amount of research interest due to its advantages of simplicity, security, and energy efficiency. However, the exploitation of ideal MOF adsorbents for C<small><sub>2</sub></small>H<small><sub>2</sub></small>/CO<small><sub>2</sub></small> separation remains a challenging task due to their similar physical properties and molecular sizes. Herein, we report a unique C<small><sub>2</sub></small>H<small><sub>2</sub></small> nano-trap constructed using accessible oxygen and nitrogen sites, which exhibits energetic favorability toward C<small><sub>2</sub></small>H<small><sub>2</sub></small> molecules. This material exhibits a good acetylene capacity of 55.31 cm<small><sup>3</sup></small> g<small><sup>−1</sup></small> and high C<small><sub>2</sub></small>H<small><sub>2</sub></small>/CO<small><sub>2</sub></small> selectivity of 7.0 under ambient conditions. We have combined <em>in situ</em> IR spectroscopy and in-depth theoretical calculations to unravel the synergistic interactions driven by the high density of accessible oxygen and nitrogen sites. Furthermore, dynamic breakthrough experiments confirmed the capability of TUTJ-201Ni for the separation of binary C<small><sub>2</sub></small>H<small><sub>2</sub></small>/CO<small><sub>2</sub></small> mixtures. This study on Ni-based MOFs will enrich Lewis basic site rich MOFs for gas adsorption and separation applications.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"28 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4dt03411b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The physical separation of C2H2 from CO2 on metal–organic frameworks (MOFs) has received a substantial amount of research interest due to its advantages of simplicity, security, and energy efficiency. However, the exploitation of ideal MOF adsorbents for C2H2/CO2 separation remains a challenging task due to their similar physical properties and molecular sizes. Herein, we report a unique C2H2 nano-trap constructed using accessible oxygen and nitrogen sites, which exhibits energetic favorability toward C2H2 molecules. This material exhibits a good acetylene capacity of 55.31 cm3 g−1 and high C2H2/CO2 selectivity of 7.0 under ambient conditions. We have combined in situ IR spectroscopy and in-depth theoretical calculations to unravel the synergistic interactions driven by the high density of accessible oxygen and nitrogen sites. Furthermore, dynamic breakthrough experiments confirmed the capability of TUTJ-201Ni for the separation of binary C2H2/CO2 mixtures. This study on Ni-based MOFs will enrich Lewis basic site rich MOFs for gas adsorption and separation applications.

Abstract Image

一种具有氢键乙炔纳米陷阱的路易斯碱基富金属有机框架,用于C2H2/CO2的有效分离
在金属有机骨架(mof)上进行C2H2和CO2的物理分离,由于其简单、安全、节能等优点,受到了大量的研究兴趣。然而,由于它们具有相似的物理性质和分子大小,开发理想的MOF吸附剂用于C2H2/CO2分离仍然是一项具有挑战性的任务。在这里,我们报道了一个独特的C2H2纳米陷阱,利用可接近的氧和氮位点构建,它对C2H2分子表现出能量上的优势。该材料具有良好的乙炔容量(55.31 cm3 g−1)和C2H2/CO2选择性(7.0)。我们结合原位红外光谱和深入的理论计算来揭示由高密度的可达氧和氮位点驱动的协同相互作用。此外,动态突破实验证实了TUTJ-201Ni分离二元C2H2/CO2混合物的能力。镍基MOFs的研究将丰富富刘易斯碱基MOFs在气体吸附和分离方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信