An Eco-Friendly Adhesive with Ultra-Strong Adhesive Performance

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Zhenyu Yang, Xiaoting Ji, Xinlong Sha, Jincheng Ding, Lin Cheng, Guangfeng Li
{"title":"An Eco-Friendly Adhesive with Ultra-Strong Adhesive Performance","authors":"Zhenyu Yang, Xiaoting Ji, Xinlong Sha, Jincheng Ding, Lin Cheng, Guangfeng Li","doi":"10.1039/d4py01398k","DOIUrl":null,"url":null,"abstract":"With the increasing global attention on energy and environmental issues, there is a growing push towards the eco-friendly transformation of adhesive materials. However, designing and developing eco-friendly adhesive materials with ultra-strong adhesion has always been a significant challenge in the field of adhesion. Herein, we present an eco-friendly adhesive (CBA) derived from bio-based thioctic acid (TA) that combines synergistic covalent and dynamic covalent polymeric segments, demonstrating strong adhesive strength and closed-loop recyclability. Specifically, leveraging the synergistic effects of dynamic covalent and covalent chain segments within the polymer network, the adhesive CBA exhibits ultra-strong adhesive strength (16.1 MPa), exceptional antifreeze performance (11.6 MPa at −196 °C), high reusability with 12.1 MPa retained after ten cycles, and resistance to common organic solvents. Importantly, the main chains of disulfide bonds formed through solid-phase thermal-induced ring-opening polymerization of TA, combined with robust reversible amide bonds to crosslink into a network, enables closed-loop recyclability. This approach of using bio-based materials with synergistic dynamic covalent and covalent bonds effectively balances adhesive strength with environmental sustainability, offering an excellent solution for designing and developing new adhesive materials.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"36 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4py01398k","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing global attention on energy and environmental issues, there is a growing push towards the eco-friendly transformation of adhesive materials. However, designing and developing eco-friendly adhesive materials with ultra-strong adhesion has always been a significant challenge in the field of adhesion. Herein, we present an eco-friendly adhesive (CBA) derived from bio-based thioctic acid (TA) that combines synergistic covalent and dynamic covalent polymeric segments, demonstrating strong adhesive strength and closed-loop recyclability. Specifically, leveraging the synergistic effects of dynamic covalent and covalent chain segments within the polymer network, the adhesive CBA exhibits ultra-strong adhesive strength (16.1 MPa), exceptional antifreeze performance (11.6 MPa at −196 °C), high reusability with 12.1 MPa retained after ten cycles, and resistance to common organic solvents. Importantly, the main chains of disulfide bonds formed through solid-phase thermal-induced ring-opening polymerization of TA, combined with robust reversible amide bonds to crosslink into a network, enables closed-loop recyclability. This approach of using bio-based materials with synergistic dynamic covalent and covalent bonds effectively balances adhesive strength with environmental sustainability, offering an excellent solution for designing and developing new adhesive materials.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Chemistry
Polymer Chemistry POLYMER SCIENCE-
CiteScore
8.60
自引率
8.70%
发文量
535
审稿时长
1.7 months
期刊介绍: Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信