Hyo Gyeom Kim, Sung Il Yu, Seung Gu Shin, Kyung Hwa Cho
{"title":"Graph-based deep learning for predictions on changes in microbiomes and biogas production in anaerobic digestion systems","authors":"Hyo Gyeom Kim, Sung Il Yu, Seung Gu Shin, Kyung Hwa Cho","doi":"10.1016/j.watres.2025.123144","DOIUrl":null,"url":null,"abstract":"Anaerobic digestion (AD), which relies on a complex microbial consortium for efficient biogas generation, is a promising avenue for renewable energy production and organic waste treatment. However, understanding and optimizing AD processes are challenging because of the intricate interactions within microbial communities and the impact of volatile fatty acids (VFAs) on biogas production. To address these challenges, this study proposes the application of graph convolutional networks (GCNs) to comprehensively model AD processes. GCN models were developed to predict microbial dynamics and biogas production by integrating network analyses of high-throughput sequencing data and VFA inhibition effects. The models were trained based on the responses of anaerobic digesters to organic loading rate shock, starvation, and bioaugmentation for 281 d under various feeding conditions. Shifts in microbial community composition during AD stages and feeding conditions were successfully identified using next-generation sequencing tools. Graph topological features indicated a significant coupling between VFAs and microbial families, and the hydrogenotrophic archaeal families were most frequently connected to other families or residual acids. The GCN accurately predicted microbial abundances and gas production rates, achieving a mean squared error of 0.11 and 0.01 and a coefficient of determination of 0.72 and 0.87 for the testing dataset. These results provide valuable insights into the effects of starvation and bioaugmentation on the microbiome by utilizing GCNs to model anaerobic treatment processes, predict microbial dynamics, and assess reactor productivity. Our study suggests a new modelling framework for understanding and improving AD systems by considering microbial interaction networks in relation to chemical parameter information at relevant operating scales.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"37 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123144","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Anaerobic digestion (AD), which relies on a complex microbial consortium for efficient biogas generation, is a promising avenue for renewable energy production and organic waste treatment. However, understanding and optimizing AD processes are challenging because of the intricate interactions within microbial communities and the impact of volatile fatty acids (VFAs) on biogas production. To address these challenges, this study proposes the application of graph convolutional networks (GCNs) to comprehensively model AD processes. GCN models were developed to predict microbial dynamics and biogas production by integrating network analyses of high-throughput sequencing data and VFA inhibition effects. The models were trained based on the responses of anaerobic digesters to organic loading rate shock, starvation, and bioaugmentation for 281 d under various feeding conditions. Shifts in microbial community composition during AD stages and feeding conditions were successfully identified using next-generation sequencing tools. Graph topological features indicated a significant coupling between VFAs and microbial families, and the hydrogenotrophic archaeal families were most frequently connected to other families or residual acids. The GCN accurately predicted microbial abundances and gas production rates, achieving a mean squared error of 0.11 and 0.01 and a coefficient of determination of 0.72 and 0.87 for the testing dataset. These results provide valuable insights into the effects of starvation and bioaugmentation on the microbiome by utilizing GCNs to model anaerobic treatment processes, predict microbial dynamics, and assess reactor productivity. Our study suggests a new modelling framework for understanding and improving AD systems by considering microbial interaction networks in relation to chemical parameter information at relevant operating scales.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.