{"title":"Increasing microplastics pollution: An emerging vector for potentially pathogenic bacteria in the environment","authors":"Ülkü Nihan Tavşanoğlu, Gülçin Akca, Tülay Pekmez, Gökben Başaran Kankılıç, Tamer Çırak, Ali Serhan Çağan, Selin Özkan Kotiloğlu, Hans-Peter Grossart","doi":"10.1016/j.watres.2025.123142","DOIUrl":null,"url":null,"abstract":"Microplastics (MP), plastic particles <5 mm, are of global concern due to their worldwide distribution and potential repercussions on ecosystems and human well-being. In this study, MP were collected from the urbanized Susurluk basin in Türkiye to evaluate their vector function for bacterial biofilms, both in the wet and dry seasons. Bacterial biofilms were predominantly found on polyethylene (PE), polypropylene (PP), and polystyrene (PS), which constitute the most common MP types in the region. Specific potentially pathogenic bacterial genera, including <em>Pseudomonas</em> sp., <em>Comamonas</em> sp., <em>Salmonella</em> spp., and <em>Shigella</em> spp., were prevalent on MP surfaces. Notably, PE and PP harboured numerous genera of potential human and/or animal origin such as <em>Staphylococcus, Proteus, Escherichia, Enterococcus</em>, and <em>Enterobacter</em>. Water quality played a pivotal role in bacterial biofilm formation on MP. Higher salinity in estuarine areas reduced bacterial abundance on MP, while the more polluted freshwater Nilüfer Stream harboured a higher abundance of total bacteria, particularly of potentially pathogenic strains. Seasonal variations, ambient water conditions, and polymer type are all factors that could influence bacterial colonization on MPs. This catchment-wide evaluation, which includes various habitat types (lentic and lotic systems), the enrichment of cultivable viable bacteria on microplastics (MPs) - a key factor in the spread of pathogens - has significant implications for both environmental and public health. Unlike controlled laboratory experiments or <em>in-situ</em> studies with various particles, this study emphasized the dynamic and complex nature of bacterial strains on MPs, which varied depending on seasonal dynamics and antropogenic impacts in open systems. Further research is needed to thoroughly investigate to fully explore the complex interactions among MPs, microbial communities, and their ecological roles, especially in the context of changing environmental factors across entire river catchments.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"61 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123142","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MP), plastic particles <5 mm, are of global concern due to their worldwide distribution and potential repercussions on ecosystems and human well-being. In this study, MP were collected from the urbanized Susurluk basin in Türkiye to evaluate their vector function for bacterial biofilms, both in the wet and dry seasons. Bacterial biofilms were predominantly found on polyethylene (PE), polypropylene (PP), and polystyrene (PS), which constitute the most common MP types in the region. Specific potentially pathogenic bacterial genera, including Pseudomonas sp., Comamonas sp., Salmonella spp., and Shigella spp., were prevalent on MP surfaces. Notably, PE and PP harboured numerous genera of potential human and/or animal origin such as Staphylococcus, Proteus, Escherichia, Enterococcus, and Enterobacter. Water quality played a pivotal role in bacterial biofilm formation on MP. Higher salinity in estuarine areas reduced bacterial abundance on MP, while the more polluted freshwater Nilüfer Stream harboured a higher abundance of total bacteria, particularly of potentially pathogenic strains. Seasonal variations, ambient water conditions, and polymer type are all factors that could influence bacterial colonization on MPs. This catchment-wide evaluation, which includes various habitat types (lentic and lotic systems), the enrichment of cultivable viable bacteria on microplastics (MPs) - a key factor in the spread of pathogens - has significant implications for both environmental and public health. Unlike controlled laboratory experiments or in-situ studies with various particles, this study emphasized the dynamic and complex nature of bacterial strains on MPs, which varied depending on seasonal dynamics and antropogenic impacts in open systems. Further research is needed to thoroughly investigate to fully explore the complex interactions among MPs, microbial communities, and their ecological roles, especially in the context of changing environmental factors across entire river catchments.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.