A Two-in-One Strategy to Simultaneously Boost the Site Density and Turnover Frequency of Fe−N−C Oxygen Reduction Catalysts

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jianbin Liu, Yao Liu, Bing Nan, Dashuai Wang, Christopher Allen, Zhichao Gong, Guanchao He, Kaixing Fu, Gonglan Ye, Huilong Fei
{"title":"A Two-in-One Strategy to Simultaneously Boost the Site Density and Turnover Frequency of Fe−N−C Oxygen Reduction Catalysts","authors":"Jianbin Liu, Yao Liu, Bing Nan, Dashuai Wang, Christopher Allen, Zhichao Gong, Guanchao He, Kaixing Fu, Gonglan Ye, Huilong Fei","doi":"10.1002/anie.202425196","DOIUrl":null,"url":null,"abstract":"Site density and turnover frequency are the two fundamental kinetic descriptors that determine the oxygen reduction activity of iron-nitrogen-carbon (Fe−N−C) catalysts. However, it remains a grand challenge to simultaneously optimize these two parameters in a single Fe−N−C catalyst. Here we show that treating a typical Fe−N−C catalyst with ammonium iodine (NH4I) vapor via a one-step chemical vapor deposition process not only increases the surface area and porosity of the catalyst (and thus enhanced exposure of active sites) via the etching effect of the in-situ released NH3, but also regulates the electronic structure of the Fe−N4 moieties by the iodine dopants incorporated into the carbon matrix. As a result, the NH4I-treated Fe−N−C catalyst possesses both high values in the site density of 2.15×1019 sites g−1 (×2 enhancement compared to the untreated counterpart) and turnover frequency of 3.71 electrons site−1 s−1 (×3 enhancement) that correspond to a high mass activity of 12.78 A g−1, as determined by in-situ nitrite stripping technique. Moreover, this catalyst exhibits an excellent oxygen reduction activity in base with a half-wave potential (E1/2) of 0.924 V and acceptable activity in acid with E1/2 = 0.795 V, and superior power density of 249.1 mW cm−2 in zinc-air batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"4 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202425196","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Site density and turnover frequency are the two fundamental kinetic descriptors that determine the oxygen reduction activity of iron-nitrogen-carbon (Fe−N−C) catalysts. However, it remains a grand challenge to simultaneously optimize these two parameters in a single Fe−N−C catalyst. Here we show that treating a typical Fe−N−C catalyst with ammonium iodine (NH4I) vapor via a one-step chemical vapor deposition process not only increases the surface area and porosity of the catalyst (and thus enhanced exposure of active sites) via the etching effect of the in-situ released NH3, but also regulates the electronic structure of the Fe−N4 moieties by the iodine dopants incorporated into the carbon matrix. As a result, the NH4I-treated Fe−N−C catalyst possesses both high values in the site density of 2.15×1019 sites g−1 (×2 enhancement compared to the untreated counterpart) and turnover frequency of 3.71 electrons site−1 s−1 (×3 enhancement) that correspond to a high mass activity of 12.78 A g−1, as determined by in-situ nitrite stripping technique. Moreover, this catalyst exhibits an excellent oxygen reduction activity in base with a half-wave potential (E1/2) of 0.924 V and acceptable activity in acid with E1/2 = 0.795 V, and superior power density of 249.1 mW cm−2 in zinc-air batteries.
同时提高Fe - N - C氧还原催化剂的位密度和周转频率的二合一策略
位点密度和周转频率是决定铁-氮-碳(Fe−N−C)催化剂氧还原活性的两个基本动力学描述符。然而,在单一的Fe−N−C催化剂中同时优化这两个参数仍然是一个巨大的挑战。本研究表明,通过一步化学气相沉积工艺,用碘铵(NH4I)蒸汽处理典型的Fe−N−C催化剂,不仅通过原位释放的NH3的蚀刻效应增加了催化剂的表面积和孔隙度(从而增强了活性位点的暴露),而且还通过加入碳基体的碘掺杂剂调节了Fe−N4部分的电子结构。结果表明,经nh4i处理的Fe - N - C催化剂具有较高的2.15×1019位密度g−1(与未处理的相比×2增强)和3.71个电子位- 1 s−1的转换频率(×3增强),对应于12.78 a g−1的高质量活性。此外,该催化剂在碱中表现出良好的氧还原活性,半波电位(E1/2)为0.924 V,在酸中表现出良好的活性(E1/2 = 0.795 V),在锌空气电池中表现出249.1 mW cm - 2的优良功率密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信