Amorphization Stabilizes Te-based Aqueous Batteries via Confining Free Water

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yanyan Zhang, Wanhai Zhou, Boya Wang, Tengsheng Zhang, Xiaoyu Yu, Xinran Li, Gaoyang Li, Hongrun Jin, Minghua Chen, Wei Li, Dongyuan Zhao, Xin Liu, Dongliang Chao
{"title":"Amorphization Stabilizes Te-based Aqueous Batteries via Confining Free Water","authors":"Yanyan Zhang, Wanhai Zhou, Boya Wang, Tengsheng Zhang, Xiaoyu Yu, Xinran Li, Gaoyang Li, Hongrun Jin, Minghua Chen, Wei Li, Dongyuan Zhao, Xin Liu, Dongliang Chao","doi":"10.1002/anie.202424056","DOIUrl":null,"url":null,"abstract":"Tellurium (Te), with its rich valence states (–2 to +6), could endow aqueous batteries with potentially high specific capacity. However, achieving complete and stable hypervalent Te0/Te4+ electrochemistry in an aqueous environment poses significant challenges, owing to the sluggish reduction kinetics, the easy dissolution of Te4+ species, and a controversial energy storage mechanism. Herein, for the first time, we demonstrate an amorphous strategy for robust aqueous TeO2/Te electrochemistry. With strong hydrogen bonding, NH4Ac confines free water, prompting TeO2 amorphous (a-TeO2). In-situ synchrotron characterization, spectroscopy analysis, electrochemical evaluation, and theoretical calculations reveal a specific 4 e− solid-solid transition pathway (Te to a-TeO2) with accelerated diffusion and charge transfer kinetics, attributed to a closer unoccupied electron orbital to the Fermi level and a reduced water desorption energy barrier in a-TeO2. Impressively, the a-TeO2/Te electrochemistry exhibits a high reversible capacity of 834 mAh g−1 (99% of Te redox utilization), superior rate performance (644 mAh g−1 at 10 A g−1), and an ultralong lifespan (over 3000 cycles). These findings prove a new tactic to advance aqueous Te electrochemistry toward high-energy aqueous batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"28 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202424056","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tellurium (Te), with its rich valence states (–2 to +6), could endow aqueous batteries with potentially high specific capacity. However, achieving complete and stable hypervalent Te0/Te4+ electrochemistry in an aqueous environment poses significant challenges, owing to the sluggish reduction kinetics, the easy dissolution of Te4+ species, and a controversial energy storage mechanism. Herein, for the first time, we demonstrate an amorphous strategy for robust aqueous TeO2/Te electrochemistry. With strong hydrogen bonding, NH4Ac confines free water, prompting TeO2 amorphous (a-TeO2). In-situ synchrotron characterization, spectroscopy analysis, electrochemical evaluation, and theoretical calculations reveal a specific 4 e− solid-solid transition pathway (Te to a-TeO2) with accelerated diffusion and charge transfer kinetics, attributed to a closer unoccupied electron orbital to the Fermi level and a reduced water desorption energy barrier in a-TeO2. Impressively, the a-TeO2/Te electrochemistry exhibits a high reversible capacity of 834 mAh g−1 (99% of Te redox utilization), superior rate performance (644 mAh g−1 at 10 A g−1), and an ultralong lifespan (over 3000 cycles). These findings prove a new tactic to advance aqueous Te electrochemistry toward high-energy aqueous batteries.
非晶化通过限制游离水来稳定碲基水电池
碲(Te)具有丰富的价态(-2 ~ +6),可以赋予水电池潜在的高比容量。然而,由于还原动力学缓慢,Te4+易于溶解,以及储能机制存在争议,在水环境中实现完全和稳定的高价Te0/Te4+电化学具有重大挑战。在这里,我们首次展示了一种无定形策略,用于稳健的TeO2/Te水溶液电化学。由于氢键作用强,NH4Ac限制了游离水,促使TeO2形成非晶态(a-TeO2)。原位同步加速器表征、光谱分析、电化学评价和理论计算揭示了一个特定的4e -固-固过渡途径(Te到a- teo2),具有加速的扩散和电荷转移动力学,这归因于a- teo2中更接近费米能级的未占据电子轨道和更低的水解吸能垒。令人印象深刻的是,a- teo2 /Te电化学表现出834 mAh g - 1的高可逆容量(99%的Te氧化还原利用率),卓越的倍率性能(10 a g - 1时644 mAh g - 1),以及超长的寿命(超过3000次循环)。这些发现证明了一种将水Te电化学推进到高能水电池的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信