Fluorescent Artificial Receptor for Dopamine based on Molecular Recognition-driven Dynamic Covalent Chemistry in a Lipid Nanoreactor

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bohdan Kozibroda, Jean-Marie Lehn, Andrey S Klymchenko
{"title":"Fluorescent Artificial Receptor for Dopamine based on Molecular Recognition-driven Dynamic Covalent Chemistry in a Lipid Nanoreactor","authors":"Bohdan Kozibroda, Jean-Marie Lehn, Andrey S Klymchenko","doi":"10.1002/anie.202419905","DOIUrl":null,"url":null,"abstract":"Molecular recognition and detection of small bioactive molecules, like neurotransmitters, remain a challenge for chemists, whereas nature found an elegant solution in form of protein receptors. Here, we introduce a concept of a dynamic artificial receptor that synergically combines molecular recognition with dynamic imine bond formation inside a lipid nanoreactor, inducing a fluorescence response. The designed supramolecular system combines a lipophilic recognition ligand derived from a boronic acid, a fluorescent aldehyde based on push-pull styryl pyridine and a phenol-based catalyst. The recognition ligand specifically captures dopamine inside lipid nanodroplets and thus triggers imine bond formation with the aldehyde, producing the emission color change. The rational design of the fluorescent aldehyde, the catalyst and the recognition ligand allows dramatic acceleration of the imine bond formation required for rapid sensing of dopamine. The nanoprobe enables dopamine detection with micromolar sensitivity and singe-nanoprobe imaging of dopamine gradients through its robust two-color ratiometric response. It displays remarkable selectivity without interference of competing biogenic primary amines and biological media: blood serum, plasma, urine and cell lysate. The proposed concept of a dynamic artificial receptor offers a solution to the long-standing problem of molecular recognition and sensing of small molecules in complex biological media.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"17 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202419905","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular recognition and detection of small bioactive molecules, like neurotransmitters, remain a challenge for chemists, whereas nature found an elegant solution in form of protein receptors. Here, we introduce a concept of a dynamic artificial receptor that synergically combines molecular recognition with dynamic imine bond formation inside a lipid nanoreactor, inducing a fluorescence response. The designed supramolecular system combines a lipophilic recognition ligand derived from a boronic acid, a fluorescent aldehyde based on push-pull styryl pyridine and a phenol-based catalyst. The recognition ligand specifically captures dopamine inside lipid nanodroplets and thus triggers imine bond formation with the aldehyde, producing the emission color change. The rational design of the fluorescent aldehyde, the catalyst and the recognition ligand allows dramatic acceleration of the imine bond formation required for rapid sensing of dopamine. The nanoprobe enables dopamine detection with micromolar sensitivity and singe-nanoprobe imaging of dopamine gradients through its robust two-color ratiometric response. It displays remarkable selectivity without interference of competing biogenic primary amines and biological media: blood serum, plasma, urine and cell lysate. The proposed concept of a dynamic artificial receptor offers a solution to the long-standing problem of molecular recognition and sensing of small molecules in complex biological media.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信