{"title":"Carbon-conductor-based photocatalyst sheets fabricated by a facile filtration process for efficient, stable, and scalable water splitting","authors":"Chen Gu, Yugo Miseki, Hiroshi Nishiyama, Tsuyoshi Takata, Joji Yoshimura, Yiwen Ma, Lihua Lin, Takashi Hisatomi, Daling Lu, Nobuyuki Zettsu, Yuta Nishina, Kazunari Domen","doi":"10.1016/j.checat.2024.101233","DOIUrl":null,"url":null,"abstract":"The use of Z-scheme photocatalyst sheets is a promising approach to efficient renewable hydrogen production via sunlight-driven water splitting using immobilized particulate photocatalysts. However, most existing systems are not scalable because of the use of costly vacuum and harmful calcination processes and conductors that are unstable and prone to back reactions. Here, we show that carbon-based electron conductors, incorporated by a facile filtration process, can overcome these problems. Z-scheme photocatalyst sheets consisting of cocatalyst-loaded Sm<sub>2</sub>Ti<sub>2</sub>O<sub>5</sub>S<sub>2</sub> and BiVO<sub>4</sub> (which serve as a hydrogen evolution photocatalyst and an oxygen evolution photocatalyst, respectively, under visible light), bridged with carbon-based electron conductors, provide a solar-to-hydrogen energy conversion efficiency of 0.4%, despite the simplicity of fabrication and operation, and can evolve hydrogen and oxygen under photoexcitation at atmospheric pressure. This study provides a practical approach to realizing commercial-scale solar hydrogen production via Z-scheme photocatalytic water splitting.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"31 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The use of Z-scheme photocatalyst sheets is a promising approach to efficient renewable hydrogen production via sunlight-driven water splitting using immobilized particulate photocatalysts. However, most existing systems are not scalable because of the use of costly vacuum and harmful calcination processes and conductors that are unstable and prone to back reactions. Here, we show that carbon-based electron conductors, incorporated by a facile filtration process, can overcome these problems. Z-scheme photocatalyst sheets consisting of cocatalyst-loaded Sm2Ti2O5S2 and BiVO4 (which serve as a hydrogen evolution photocatalyst and an oxygen evolution photocatalyst, respectively, under visible light), bridged with carbon-based electron conductors, provide a solar-to-hydrogen energy conversion efficiency of 0.4%, despite the simplicity of fabrication and operation, and can evolve hydrogen and oxygen under photoexcitation at atmospheric pressure. This study provides a practical approach to realizing commercial-scale solar hydrogen production via Z-scheme photocatalytic water splitting.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.