Efficient oral insulin delivery with sustained release by folate-conjugated metal-organic framework nanoparticles

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-01-14 DOI:10.1016/j.matt.2024.101948
Jun-Jie Zou, Qing Chen, Joshua Phipps, Yu Zhao, Xudong Qin, Wanyi Tai, Shengqian Ma, Jian Tian
{"title":"Efficient oral insulin delivery with sustained release by folate-conjugated metal-organic framework nanoparticles","authors":"Jun-Jie Zou, Qing Chen, Joshua Phipps, Yu Zhao, Xudong Qin, Wanyi Tai, Shengqian Ma, Jian Tian","doi":"10.1016/j.matt.2024.101948","DOIUrl":null,"url":null,"abstract":"Oral protein/peptide delivery systems have garnered global interest due to their potential to provide substantial benefits to patients. However, their clinical translation has been impeded by challenges pertinent to poor intestinal permeability, acid instability, and the short half-life of proteins/peptides. Here, we report a simple, efficient, and sustained-release oral insulin delivery system based on folic acid (FA)-conjugated acid-resistant metal-organic framework (MOF) nanoparticles with high drug-loading capacity. The FA conjugation on MOF (PCN-777) nanoparticles not only selectively augmented intestinal transportation efficiency in diabetic animals via upregulated intestinal FA transporter-mediated endocytosis but they also tuned PCN-777 disintegration in the phosphate-rich bloodstream environment to sustain long-acting basal insulin release kinetics within a narrow therapeutic range. In diabetic animal models, the FA-PCN-777 oral insulin delivery nanosystem exhibited a smooth hypoglycemic effect for up to 48 h and a markedly high bioavailability of 35.5%, representing a potential long-acting oral formulation with reduced hypoglycemia risk.","PeriodicalId":388,"journal":{"name":"Matter","volume":"26 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.101948","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Oral protein/peptide delivery systems have garnered global interest due to their potential to provide substantial benefits to patients. However, their clinical translation has been impeded by challenges pertinent to poor intestinal permeability, acid instability, and the short half-life of proteins/peptides. Here, we report a simple, efficient, and sustained-release oral insulin delivery system based on folic acid (FA)-conjugated acid-resistant metal-organic framework (MOF) nanoparticles with high drug-loading capacity. The FA conjugation on MOF (PCN-777) nanoparticles not only selectively augmented intestinal transportation efficiency in diabetic animals via upregulated intestinal FA transporter-mediated endocytosis but they also tuned PCN-777 disintegration in the phosphate-rich bloodstream environment to sustain long-acting basal insulin release kinetics within a narrow therapeutic range. In diabetic animal models, the FA-PCN-777 oral insulin delivery nanosystem exhibited a smooth hypoglycemic effect for up to 48 h and a markedly high bioavailability of 35.5%, representing a potential long-acting oral formulation with reduced hypoglycemia risk.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信