Shape‐Reconfigurable Crack‐Based Strain Sensor with Ultrahigh and Tunable Sensitivity

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Seungjae Lee, Youngoh Lee, Cheolhong Park, Yun Goo Ro, Min Sub Kwak, Geonyoung Jeong, Junseo Park, Hyejin Lee, Pan Kyeom Kim, Sung‐Il Chung, Hyunhyub Ko
{"title":"Shape‐Reconfigurable Crack‐Based Strain Sensor with Ultrahigh and Tunable Sensitivity","authors":"Seungjae Lee, Youngoh Lee, Cheolhong Park, Yun Goo Ro, Min Sub Kwak, Geonyoung Jeong, Junseo Park, Hyejin Lee, Pan Kyeom Kim, Sung‐Il Chung, Hyunhyub Ko","doi":"10.1002/adfm.202421812","DOIUrl":null,"url":null,"abstract":"In the field of wearable electronics and human–machine interfaces, there is a growing need for highly sensitive and adaptable sensors capable of detecting a wide range of stimuli with high precision. Traditional sensors often lack the versatility to adjust their sensitivity for different applications. Inspired by the mechanosensory system of spiders, a shape‐reconfigurable crack‐based sensor with ultrahigh and tunable strain sensitivity based on the precise control of nanocrack formation on a shape memory polymer substrate is demonstrated. This design incorporates a line‐patterned substrate composed of a thermoplastic polyurethane (TPU) matrix and thermo‐responsive shape memory polymer, poly(lactic acid) (PLA), to form parallel nanocracks in a thin platinum film. This design achieves an ultrahigh gauge factor of 2.7 × 10<jats:sup>9</jats:sup> at 2% strain, significantly surpassing conventional sensors. The shape memory property of the TPU/PLA substrate enables tunable strain sensitivity according to the desired strain range, eliminating the need for multiple sensors. The sensor demonstrates exceptional capabilities in detecting subtle strains (as low as 0.025%), monitoring biological signals, and sensing acoustic waves (100–20 000 Hz) with a response time of 0.025 ms. This work represents a significant advancement toward strain sensors with both ultrahigh and tunable sensitivity.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"7 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202421812","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of wearable electronics and human–machine interfaces, there is a growing need for highly sensitive and adaptable sensors capable of detecting a wide range of stimuli with high precision. Traditional sensors often lack the versatility to adjust their sensitivity for different applications. Inspired by the mechanosensory system of spiders, a shape‐reconfigurable crack‐based sensor with ultrahigh and tunable strain sensitivity based on the precise control of nanocrack formation on a shape memory polymer substrate is demonstrated. This design incorporates a line‐patterned substrate composed of a thermoplastic polyurethane (TPU) matrix and thermo‐responsive shape memory polymer, poly(lactic acid) (PLA), to form parallel nanocracks in a thin platinum film. This design achieves an ultrahigh gauge factor of 2.7 × 109 at 2% strain, significantly surpassing conventional sensors. The shape memory property of the TPU/PLA substrate enables tunable strain sensitivity according to the desired strain range, eliminating the need for multiple sensors. The sensor demonstrates exceptional capabilities in detecting subtle strains (as low as 0.025%), monitoring biological signals, and sensing acoustic waves (100–20 000 Hz) with a response time of 0.025 ms. This work represents a significant advancement toward strain sensors with both ultrahigh and tunable sensitivity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信