Hongyu Fan, Hang Yang, Yue Wu, Chaohua Cui, Yongfang Li
{"title":"Phenanthrene Treatment for O‐xylene‐Processed PM6:Y6‐Based Organic Solar Cells Enables Over 19% Efficiency","authors":"Hongyu Fan, Hang Yang, Yue Wu, Chaohua Cui, Yongfang Li","doi":"10.1002/aenm.202405257","DOIUrl":null,"url":null,"abstract":"Achieving excellent charge transport properties in high‐performance organic solar cells (OSCs) generally requires photovoltaic materials to have strong crystallinity. Meanwhile, non‐halogenated solvent processing is very important for future application of the OSCs. However, highly crystalline materials will pose challenges for the control of molecular aggregation behavior in donor/acceptor blend films processed with high boiling point non‐halogenated solvents. Herein, a new approach to effectively regulate the aggregation of represented strong crystallinity material Y6 in high boiling point processing solvents is developed by employing phenanthrene (PAT) with unique crystallinity and relatively loose molecular stacking as volatile solid additive. It is elucidated that PAT treatment shows a significant effect in inhibiting the excessive self‐aggregation of Y6 in high boiling point solvent during the film formation process and reducing the crystallization rate of Y6 molecules under thermal annealing, resulting in highly ordered molecular packing and favorable phase‐separated morphology. As a result, the PM6:Y6‐based device processed with chlorobenzene, toluene, and <jats:italic>o</jats:italic>‐xylene achieve excellent power conversion efficiencies (PCEs) of 17.71%, 17.99%, and 19.04%, respectively. The efficiency of 19.04% represents the highest value so far for the PM6:Y6‐based binary OSCs processed with high boiling point non‐halogenated solvents.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"75 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202405257","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving excellent charge transport properties in high‐performance organic solar cells (OSCs) generally requires photovoltaic materials to have strong crystallinity. Meanwhile, non‐halogenated solvent processing is very important for future application of the OSCs. However, highly crystalline materials will pose challenges for the control of molecular aggregation behavior in donor/acceptor blend films processed with high boiling point non‐halogenated solvents. Herein, a new approach to effectively regulate the aggregation of represented strong crystallinity material Y6 in high boiling point processing solvents is developed by employing phenanthrene (PAT) with unique crystallinity and relatively loose molecular stacking as volatile solid additive. It is elucidated that PAT treatment shows a significant effect in inhibiting the excessive self‐aggregation of Y6 in high boiling point solvent during the film formation process and reducing the crystallization rate of Y6 molecules under thermal annealing, resulting in highly ordered molecular packing and favorable phase‐separated morphology. As a result, the PM6:Y6‐based device processed with chlorobenzene, toluene, and o‐xylene achieve excellent power conversion efficiencies (PCEs) of 17.71%, 17.99%, and 19.04%, respectively. The efficiency of 19.04% represents the highest value so far for the PM6:Y6‐based binary OSCs processed with high boiling point non‐halogenated solvents.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.