{"title":"Catalytic-independent functions of the Integrator–PP2A complex (INTAC) confer sensitivity to BET inhibition","authors":"Pengyu Fan, Xue-Ying Shang, Aixia Song, Shuo Chen, Run-Yuan Mao, Jingchuan Ma, Jiwei Chen, Zhenning Wang, Hai Zheng, Bolin Tao, Lei Hong, Jiaxian Liu, Wei Xu, Wei Jiang, Hongjie Shen, Qi Zhang, Huijuan Yang, Xiao-Ming Meng, Fei Lan, Jingdong Cheng, Congling Xu, Peng Zhang, Hai Jiang, Fei Xavier Chen","doi":"10.1038/s41589-024-01807-x","DOIUrl":null,"url":null,"abstract":"<p>Chromatin and transcription regulators are critical to defining cell identity through shaping epigenetic and transcriptional landscapes, with their misregulation being closely linked to oncogenesis. Pharmacologically targeting these regulators, particularly the transcription-activating BET proteins, has emerged as a promising approach in cancer therapy, yet intrinsic or acquired resistance frequently occurs, with poorly understood mechanisms. Here, using genome-wide CRISPR screens, we find that BET inhibitor efficacy in mediating transcriptional silencing and growth inhibition depends on the auxiliary/arm/tail module of the Integrator–PP2A complex (INTAC), a global regulator of RNA polymerase II pause–release dynamics. This process bypasses a requirement for the catalytic activities of INTAC and instead leverages direct engagement of the auxiliary module with the RACK7/ZMYND8–KDM5C complex to remove histone H3K4 methylation. Targeted degradation of the COMPASS subunit WDR5 to attenuate H3K4 methylation restores sensitivity to BET inhibitors, highlighting how simultaneously targeting coordinated chromatin and transcription regulators can circumvent drug-resistant tumors.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"97 5 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01807-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chromatin and transcription regulators are critical to defining cell identity through shaping epigenetic and transcriptional landscapes, with their misregulation being closely linked to oncogenesis. Pharmacologically targeting these regulators, particularly the transcription-activating BET proteins, has emerged as a promising approach in cancer therapy, yet intrinsic or acquired resistance frequently occurs, with poorly understood mechanisms. Here, using genome-wide CRISPR screens, we find that BET inhibitor efficacy in mediating transcriptional silencing and growth inhibition depends on the auxiliary/arm/tail module of the Integrator–PP2A complex (INTAC), a global regulator of RNA polymerase II pause–release dynamics. This process bypasses a requirement for the catalytic activities of INTAC and instead leverages direct engagement of the auxiliary module with the RACK7/ZMYND8–KDM5C complex to remove histone H3K4 methylation. Targeted degradation of the COMPASS subunit WDR5 to attenuate H3K4 methylation restores sensitivity to BET inhibitors, highlighting how simultaneously targeting coordinated chromatin and transcription regulators can circumvent drug-resistant tumors.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.