{"title":"Submersion deteriorates the mechanical properties of Cynodon dactylon root and alters its failure type","authors":"Deyu Liu, Zhubao Chen, Lun Zhang, Zhenyao Xia, Rui Xiang, Feng Gao, Qianheng Zhang, Ruidong Yang, Yu Ding, Yueshu Yang, Hai Xiao","doi":"10.1007/s11104-025-07211-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>Environmental stresses can influence root mechanical strength, the impact of submersion of the water level fluctuation zone on the root mechanical strength of <i>Cynodon dactylon</i> was evaluated in this study.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Variations in the physicochemical properties (root weight density and root activity), mechanical strengths (tensile and pullout strength) and failure types of <i>C. dactylon</i> roots were investigated using a submersion experiment with 8 durations (0, 15, 30, 60, 90, 120, 150, 180 d), with a treatment without submersion serving as the control (CK). Additionally, corresponding variation in the microstructure of the roots was observed.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The root weight density, root activity, root tensile strength and pullout strength of <i>C. dactylon</i> rapidly decreased, followed by a gradual decrease with increasing duration, and the reductions during the first 15 d of submersion accounted for 65.15%, 75.86%, 61.14% and 68.26% of the maximum reduction during the submersion process, respectively. Negative power function relationships were found between root mechanical strength and root diameter. Submersion increased the proportion of fracture failures during the pullout process. Moreover, the influence of submersion on root mechanical strength and failure type was regulated by a reduction in root activity.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Submersion deteriorates the mechanical properties of <i>C. dactylon</i> roots and alters their failure type.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"8 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-025-07211-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Environmental stresses can influence root mechanical strength, the impact of submersion of the water level fluctuation zone on the root mechanical strength of Cynodon dactylon was evaluated in this study.
Methods
Variations in the physicochemical properties (root weight density and root activity), mechanical strengths (tensile and pullout strength) and failure types of C. dactylon roots were investigated using a submersion experiment with 8 durations (0, 15, 30, 60, 90, 120, 150, 180 d), with a treatment without submersion serving as the control (CK). Additionally, corresponding variation in the microstructure of the roots was observed.
Results
The root weight density, root activity, root tensile strength and pullout strength of C. dactylon rapidly decreased, followed by a gradual decrease with increasing duration, and the reductions during the first 15 d of submersion accounted for 65.15%, 75.86%, 61.14% and 68.26% of the maximum reduction during the submersion process, respectively. Negative power function relationships were found between root mechanical strength and root diameter. Submersion increased the proportion of fracture failures during the pullout process. Moreover, the influence of submersion on root mechanical strength and failure type was regulated by a reduction in root activity.
Conclusions
Submersion deteriorates the mechanical properties of C. dactylon roots and alters their failure type.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.