Sara Ruiz-Moreno , Alberto Bemporad , Antonio Javier Gallego , Eduardo Fernández Camacho
{"title":"System identification and fault reconstruction in solar plants via extended Kalman filter-based training of recurrent neural networks","authors":"Sara Ruiz-Moreno , Alberto Bemporad , Antonio Javier Gallego , Eduardo Fernández Camacho","doi":"10.1016/j.isatra.2025.01.002","DOIUrl":null,"url":null,"abstract":"<div><div>This article proposes using the extended Kalman filter (EKF) for recurrent neural network (RNN) training and fault estimation within a parabolic-trough solar plant. The initial step involves employing an RNN to model the system. Given the challenge of fault discernibility in the collectors, parallel EKFs are employed to reconstruct the parameters of the faults. The parameters are used independently to estimate the system output, and the type of fault is isolated based on the estimation errors using another feedforward neural network. To evaluate the effectiveness of the methodology, simulations are conducted on a loop of the ACUREX plant with irradiances from sunny and cloudy days. The results reveal a fault classification accuracy of approximately 90% and a fault reconstruction error below 3%, with even better accuracies in the cloudy dataset than in the sunny dataset.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"158 ","pages":"Pages 272-284"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057825000035","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes using the extended Kalman filter (EKF) for recurrent neural network (RNN) training and fault estimation within a parabolic-trough solar plant. The initial step involves employing an RNN to model the system. Given the challenge of fault discernibility in the collectors, parallel EKFs are employed to reconstruct the parameters of the faults. The parameters are used independently to estimate the system output, and the type of fault is isolated based on the estimation errors using another feedforward neural network. To evaluate the effectiveness of the methodology, simulations are conducted on a loop of the ACUREX plant with irradiances from sunny and cloudy days. The results reveal a fault classification accuracy of approximately 90% and a fault reconstruction error below 3%, with even better accuracies in the cloudy dataset than in the sunny dataset.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.