Shengjie Gao , Qiujuan Wang , Yunlu Gao , Xiaoxiao Feng , Kunjie Pang , Haicheng Li , Feixue Zheng , Jingwen Lu , Bowen Li , Jia Liu , Mingxia Yang , Kefeng Li , Halmurat Ismayiljan , Huanming Yang , Jiangwei Yan , Xiaosen Guo , Ye Yin
{"title":"Development and validation of a multiplex panel with 232 microhaplotypes and software for forensic kinship analysis","authors":"Shengjie Gao , Qiujuan Wang , Yunlu Gao , Xiaoxiao Feng , Kunjie Pang , Haicheng Li , Feixue Zheng , Jingwen Lu , Bowen Li , Jia Liu , Mingxia Yang , Kefeng Li , Halmurat Ismayiljan , Huanming Yang , Jiangwei Yan , Xiaosen Guo , Ye Yin","doi":"10.1016/j.fsigen.2024.103212","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we developed and validated a novel microhaplotype (MH) panel, the FGID Microhaplotype Kit, which contains 232 loci and was specifically designed for forensic kinship analysis. The performance of the panel was evaluated through rigorous testing that included sensitivity, species specificity, inhibitor resistance, uniformity, stability, accuracy and mixture deconvolution. The results showed that the kit is capable of reliably detecting all loci with minimal DNA input. It showed high species specificity for 12 non-human DNA samples and resistance to common inhibitors. In addition, forensic statistical analysis revealed a combined discriminatory power (cDP) of 1-1.68e-223 and superior combined exclusion power for duo and trio cases compared to standard STR panels. The panel was also tested for kinship analyzes with simulated and real pedigree samples and showed significantly higher likelihood ratios (LR) for detecting relationships between parents and offspring, full siblings, half siblings and first cousins, especially for more distant kinship types where conventional STR panels have difficulties. Using the FGID kinship software with the MH panel significantly improved the accuracy of kinship analysis, allowing even closely related individuals to be effectively discriminated while reducing the number of false negatives. In addition, principal component analysis (PCA) showed that the panel can distinguish the major world populations and East Asian subpopulations. Taken together, these results suggest that the FGID Microhaplotype Kit and associated software provide an efficient and accurate solution for forensic kinship analysis that offers better discriminatory power and reliability than traditional STR-based methods.</div></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":"76 ","pages":"Article 103212"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872497324002084","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we developed and validated a novel microhaplotype (MH) panel, the FGID Microhaplotype Kit, which contains 232 loci and was specifically designed for forensic kinship analysis. The performance of the panel was evaluated through rigorous testing that included sensitivity, species specificity, inhibitor resistance, uniformity, stability, accuracy and mixture deconvolution. The results showed that the kit is capable of reliably detecting all loci with minimal DNA input. It showed high species specificity for 12 non-human DNA samples and resistance to common inhibitors. In addition, forensic statistical analysis revealed a combined discriminatory power (cDP) of 1-1.68e-223 and superior combined exclusion power for duo and trio cases compared to standard STR panels. The panel was also tested for kinship analyzes with simulated and real pedigree samples and showed significantly higher likelihood ratios (LR) for detecting relationships between parents and offspring, full siblings, half siblings and first cousins, especially for more distant kinship types where conventional STR panels have difficulties. Using the FGID kinship software with the MH panel significantly improved the accuracy of kinship analysis, allowing even closely related individuals to be effectively discriminated while reducing the number of false negatives. In addition, principal component analysis (PCA) showed that the panel can distinguish the major world populations and East Asian subpopulations. Taken together, these results suggest that the FGID Microhaplotype Kit and associated software provide an efficient and accurate solution for forensic kinship analysis that offers better discriminatory power and reliability than traditional STR-based methods.
期刊介绍:
Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts.
The scope of the journal includes:
Forensic applications of human polymorphism.
Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies.
Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms.
Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications.
Non-human DNA polymorphisms for crime scene investigation.
Population genetics of human polymorphisms of forensic interest.
Population data, especially from DNA polymorphisms of interest for the solution of forensic problems.
DNA typing methodologies and strategies.
Biostatistical methods in forensic genetics.
Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches.
Standards in forensic genetics.
Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards.
Quality control.
Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies.
Criminal DNA databases.
Technical, legal and statistical issues.
General ethical and legal issues related to forensic genetics.