Sheng-Nan Wang, Xin-Yu Li, Zhong-Xia Lu, Lu-Xin Liu, Xuan-Ping Xu, Wen-Gong Yu and Xin-Zhi Lu
{"title":"Effect and mechanism of oritavancin on hIAPP amyloid formation†","authors":"Sheng-Nan Wang, Xin-Yu Li, Zhong-Xia Lu, Lu-Xin Liu, Xuan-Ping Xu, Wen-Gong Yu and Xin-Zhi Lu","doi":"10.1039/D4TB02215G","DOIUrl":null,"url":null,"abstract":"<p >Amyloidosis of the human islet amyloid polypeptide (hIAPP) is closely related to the pathogenesis of type 2 diabetes (T2D) and serves as both a diagnostic hallmark and a key therapeutic target for T2D. In this study, we discovered that oritavancin (Ori), a glycopeptide antibiotic primarily prescribed for Gram-positive bacterial infections, can dose-dependently inhibit recombinant hIAPP (rhIAPP) amyloid formation. Ori specifically inhibited rhIAPP amyloid formation at the initial nucleation stage but didn’t affect mature rhIAPP fibrils. As a result, Ori reduced amyloidosis of rhIAPP induced pancreatic NIT-1 cell apoptosis and reactive oxygen species (ROS) release. Based on the results from studies involving antibiotic homologues of Ori and its acid hydrolysates, we demonstrated that both the <em>N</em>-(4-chlorobiphenyl) methyl group (CBP) and glycopeptide backbone were necessary for inhibiting rhIAPP amyloid formation. The mechanism behind Ori on rhIAPP amyloid formation lies in the direct interaction of the two molecules identified by ESI-MS and molecular docking assays. Consequently, this research not only lays the groundwork for developing novel therapeutic approaches for T2D but also presents the opportunity to repurpose Ori as a treatment option.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 6","pages":" 2192-2202"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02215g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Amyloidosis of the human islet amyloid polypeptide (hIAPP) is closely related to the pathogenesis of type 2 diabetes (T2D) and serves as both a diagnostic hallmark and a key therapeutic target for T2D. In this study, we discovered that oritavancin (Ori), a glycopeptide antibiotic primarily prescribed for Gram-positive bacterial infections, can dose-dependently inhibit recombinant hIAPP (rhIAPP) amyloid formation. Ori specifically inhibited rhIAPP amyloid formation at the initial nucleation stage but didn’t affect mature rhIAPP fibrils. As a result, Ori reduced amyloidosis of rhIAPP induced pancreatic NIT-1 cell apoptosis and reactive oxygen species (ROS) release. Based on the results from studies involving antibiotic homologues of Ori and its acid hydrolysates, we demonstrated that both the N-(4-chlorobiphenyl) methyl group (CBP) and glycopeptide backbone were necessary for inhibiting rhIAPP amyloid formation. The mechanism behind Ori on rhIAPP amyloid formation lies in the direct interaction of the two molecules identified by ESI-MS and molecular docking assays. Consequently, this research not only lays the groundwork for developing novel therapeutic approaches for T2D but also presents the opportunity to repurpose Ori as a treatment option.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices