A Mellal, P González-López, L Giammattei, M George, D Starnoni, G Cossu, J F Cornelius, M Berhouma, M Messerer, R T Daniel
{"title":"Evaluating the impact of a hand-crafted 3D-Printed head Model and virtual reality in skull base surgery training.","authors":"A Mellal, P González-López, L Giammattei, M George, D Starnoni, G Cossu, J F Cornelius, M Berhouma, M Messerer, R T Daniel","doi":"10.1016/j.bas.2024.104163","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>While cadaveric dissections remain the cornerstone of education in skull base surgery, they are associated with high costs, difficulty acquiring specimens, and a lack of pathology in anatomical samples. This study evaluated the impact of a hand-crafted three-dimensional (3D)-printed head model and virtual reality (VR) in enhancing skull base surgery training.</p><p><strong>Research question: </strong>How effective are 3D-printed models and VR in enhancing training in skull base surgery?</p><p><strong>Materials and methods: </strong>A two-day skull base training course was conducted with 12 neurosurgical trainees and 11 faculty members. The course used a 3D-printed head model, VR simulations, and cadaveric dissections. The 3D model included four tumors and was manually assembled to replicate tumor-modified neuroanatomy. Trainees performed surgical approaches, with pre- and post-course self-assessments to evaluate their knowledge and skills. Faculty provided feedback on the model's educational value and accuracy. All items were rated on a 5-point scale.</p><p><strong>Results: </strong>Trainees showed significant improvement in understanding spatial relationships and surgical steps, with scores increasing from 3.40 ± 0.70 to 4.50 ± 0.53 for both items. Faculty rated the educational value of the model with a score of 4.33 ± 0.82, and a score of 5.00 ± 0.00 for recommending the 3D-printed model to other residents. However, realism in soft tissue simulations received lower ratings.</p><p><strong>Discussion and conclusion: </strong>Virtual reality and 3D-printed models enhance anatomical understanding and surgical training in skull base surgery. These tools offer a cost-effective, realistic, and accessible alternative to cadaveric training, though further refinement in soft tissue realism is needed.</p>","PeriodicalId":72443,"journal":{"name":"Brain & spine","volume":"5 ","pages":"104163"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718289/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain & spine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bas.2024.104163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: While cadaveric dissections remain the cornerstone of education in skull base surgery, they are associated with high costs, difficulty acquiring specimens, and a lack of pathology in anatomical samples. This study evaluated the impact of a hand-crafted three-dimensional (3D)-printed head model and virtual reality (VR) in enhancing skull base surgery training.
Research question: How effective are 3D-printed models and VR in enhancing training in skull base surgery?
Materials and methods: A two-day skull base training course was conducted with 12 neurosurgical trainees and 11 faculty members. The course used a 3D-printed head model, VR simulations, and cadaveric dissections. The 3D model included four tumors and was manually assembled to replicate tumor-modified neuroanatomy. Trainees performed surgical approaches, with pre- and post-course self-assessments to evaluate their knowledge and skills. Faculty provided feedback on the model's educational value and accuracy. All items were rated on a 5-point scale.
Results: Trainees showed significant improvement in understanding spatial relationships and surgical steps, with scores increasing from 3.40 ± 0.70 to 4.50 ± 0.53 for both items. Faculty rated the educational value of the model with a score of 4.33 ± 0.82, and a score of 5.00 ± 0.00 for recommending the 3D-printed model to other residents. However, realism in soft tissue simulations received lower ratings.
Discussion and conclusion: Virtual reality and 3D-printed models enhance anatomical understanding and surgical training in skull base surgery. These tools offer a cost-effective, realistic, and accessible alternative to cadaveric training, though further refinement in soft tissue realism is needed.