Hemolymph microbiota and immune effectors' expressions driven by geographical rearing acclimation of the aquacultured Penaeus stylirostris.

IF 4.9 Q1 MICROBIOLOGY
Valérie Perez, Viviane Boulo, Julien De Lorgeril, Dominique Pham, Dominique Ansquer, Gwenola Plougoulen, Valentine Ballan, Jean-Sébastien Lam, Océane Romatif, Jeremy Le Luyer, Corinne Falchetto, Caline Basset, Stanley Flohr, Moana Maamaatuaiahutapu, Marc André Lafille, Christophe Lau, Denis Saulnier, Nelly Wabete, Nolwenn Callac
{"title":"Hemolymph microbiota and immune effectors' expressions driven by geographical rearing acclimation of the aquacultured Penaeus stylirostris.","authors":"Valérie Perez, Viviane Boulo, Julien De Lorgeril, Dominique Pham, Dominique Ansquer, Gwenola Plougoulen, Valentine Ballan, Jean-Sébastien Lam, Océane Romatif, Jeremy Le Luyer, Corinne Falchetto, Caline Basset, Stanley Flohr, Moana Maamaatuaiahutapu, Marc André Lafille, Christophe Lau, Denis Saulnier, Nelly Wabete, Nolwenn Callac","doi":"10.1186/s42523-025-00376-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In holobiont, microbiota is known to play a central role on the health and immunity of its host. Then, understanding the microbiota, its dynamic according to the environmental conditions and its link to the immunity would help to react to potential dysbiosis of aquacultured species. While the gut microbiota is highly studied, in marine invertebrates the hemolymph microbiota is often set aside even if it remains an important actor of the hemolymph homeostasis. Indeed, the hemolymph harbors the factors involved in the animal homeostasis that interacts with the microbiota, the immunity. In the Southwest Pacific, the high economical valued shrimp Penaeus stylirostris is reared in two contrasted sites, in New Caledonia (NC) and in French Polynesia (FP).</p><p><strong>Results: </strong>We characterized the active microbiota inhabiting the hemolymph of shrimps while considering its stability during two seasons and at a one-month interval and evidenced an important microbial variability between the shrimps according to the rearing conditions and the sites. We highlighted specific biomarkers along with a common core microbiota composed of 6 ASVs. Putative microbial functions were mostly associated with bacterial competition, infections and metabolism in NC, while they were highly associated with the cell metabolism in FP suggesting a rearing site discrimination. Differential relative expression of immune effectors measured in the hemolymph of two shrimp populations from NC and FP, exhibited higher level of expression in NC compared to FP. In addition, differential relative expression of immune effectors was correlated to bacterial biomarkers based on their geographical location.</p><p><strong>Conclusions: </strong>Our data suggest that, in Pacific shrimps, both the microbiota and the expression of the immune effectors could have undergone differential immunostimulation according to the rearing site as well as a geographical adaptative divergence of the shrimps as an holobiont, to their rearing sites. Further, the identification of proxies such as the core microbiota and site biomarkers, could be used to guide future actions to monitor the bacterial microbiota and thus preserve the productions.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"5"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725212/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-025-00376-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In holobiont, microbiota is known to play a central role on the health and immunity of its host. Then, understanding the microbiota, its dynamic according to the environmental conditions and its link to the immunity would help to react to potential dysbiosis of aquacultured species. While the gut microbiota is highly studied, in marine invertebrates the hemolymph microbiota is often set aside even if it remains an important actor of the hemolymph homeostasis. Indeed, the hemolymph harbors the factors involved in the animal homeostasis that interacts with the microbiota, the immunity. In the Southwest Pacific, the high economical valued shrimp Penaeus stylirostris is reared in two contrasted sites, in New Caledonia (NC) and in French Polynesia (FP).

Results: We characterized the active microbiota inhabiting the hemolymph of shrimps while considering its stability during two seasons and at a one-month interval and evidenced an important microbial variability between the shrimps according to the rearing conditions and the sites. We highlighted specific biomarkers along with a common core microbiota composed of 6 ASVs. Putative microbial functions were mostly associated with bacterial competition, infections and metabolism in NC, while they were highly associated with the cell metabolism in FP suggesting a rearing site discrimination. Differential relative expression of immune effectors measured in the hemolymph of two shrimp populations from NC and FP, exhibited higher level of expression in NC compared to FP. In addition, differential relative expression of immune effectors was correlated to bacterial biomarkers based on their geographical location.

Conclusions: Our data suggest that, in Pacific shrimps, both the microbiota and the expression of the immune effectors could have undergone differential immunostimulation according to the rearing site as well as a geographical adaptative divergence of the shrimps as an holobiont, to their rearing sites. Further, the identification of proxies such as the core microbiota and site biomarkers, could be used to guide future actions to monitor the bacterial microbiota and thus preserve the productions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信