Enhancing crop yields to ensure food security by optimizing photosynthesis.

IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chunrong Li, Xuejia Du, Cuimin Liu
{"title":"Enhancing crop yields to ensure food security by optimizing photosynthesis.","authors":"Chunrong Li, Xuejia Du, Cuimin Liu","doi":"10.1016/j.jgg.2025.01.002","DOIUrl":null,"url":null,"abstract":"<p><p>The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau. Therefore, it is essential to accelerate advancements in photosynthesis, the fundamental process by which plants convert light energy into chemical energy, to further enhance crop yields. Research focused on improving photosynthesis holds significant promise for increasing sustainable agricultural productivity and addressing challenges related to global food security. This review examines the latest advancements and strategies aimed at boosting crop yields by enhancing photosynthetic efficiency. There has been a linear increase in yield over the years in historically released germplasm selected through traditional breeding methods, and this increase is accompanied by improved photosynthesis. We explore various aspects of the light reactions designed to enhance crop yield, including light harvest efficiency through smart canopy systems, expanding the absorbed light spectrum to include far-red light, optimizing non-photochemical quenching, and accelerating electron transport flux. At the same time, we investigate carbon reactions that can enhance crop yield, such as manipulating Rubisco activity, improving the Calvin-Benson-Bassham (CBB) cycle, introducing CO<sub>2</sub> concentrating mechanisms (CCMs) in C<sub>3</sub> plants, and optimizing carbon allocation. These strategies could significantly impact crop yield enhancement and help bridge the yield gap.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.01.002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau. Therefore, it is essential to accelerate advancements in photosynthesis, the fundamental process by which plants convert light energy into chemical energy, to further enhance crop yields. Research focused on improving photosynthesis holds significant promise for increasing sustainable agricultural productivity and addressing challenges related to global food security. This review examines the latest advancements and strategies aimed at boosting crop yields by enhancing photosynthetic efficiency. There has been a linear increase in yield over the years in historically released germplasm selected through traditional breeding methods, and this increase is accompanied by improved photosynthesis. We explore various aspects of the light reactions designed to enhance crop yield, including light harvest efficiency through smart canopy systems, expanding the absorbed light spectrum to include far-red light, optimizing non-photochemical quenching, and accelerating electron transport flux. At the same time, we investigate carbon reactions that can enhance crop yield, such as manipulating Rubisco activity, improving the Calvin-Benson-Bassham (CBB) cycle, introducing CO2 concentrating mechanisms (CCMs) in C3 plants, and optimizing carbon allocation. These strategies could significantly impact crop yield enhancement and help bridge the yield gap.

通过优化光合作用,提高作物产量,保障粮食安全。
通过传统植物育种技术获得的作物产量似乎已接近平稳期。因此,为了进一步提高作物产量,必须加快光合作用的进展,光合作用是植物将光能转化为化学能的基本过程。专注于改善光合作用的研究对提高可持续农业生产力和解决与全球粮食安全相关的挑战具有重大希望。本文综述了通过提高光合效率来提高作物产量的最新进展和策略。通过传统育种方法选择的历史释放种质的产量多年来呈线性增长,这种增长伴随着光合作用的改善。我们探索了旨在提高作物产量的光反应的各个方面,包括通过智能冠层系统提高光收获效率,扩大吸收光谱以包括远红光,优化非光化学猝灭和加速电子传递通量。同时,我们还研究了可以提高作物产量的碳反应,如调节Rubisco活性,改善Calvin-Benson-Bassham (CBB)循环,在C3植物中引入CO2浓缩机制(CCMs),以及优化碳分配。这些策略可以显著提高作物产量,并有助于弥合产量差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Genetics and Genomics
Journal of Genetics and Genomics 生物-生化与分子生物学
CiteScore
8.20
自引率
3.40%
发文量
4756
审稿时长
14 days
期刊介绍: The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信