Xinfa Liu, Jie Li, Durairaj Karthick Rajan, Shubing Zhang
{"title":"Formulation of Zinc-Based Nanomaterials using the Eucommia ulmoides Bark Extract and their Wound Healing Potential.","authors":"Xinfa Liu, Jie Li, Durairaj Karthick Rajan, Shubing Zhang","doi":"10.3791/67416","DOIUrl":null,"url":null,"abstract":"<p><p>The aqueous extract from the bark of Eucommia ulmoides serves as a rich source of bioactive compounds with numerous health benefits. The protocol here aims to explore the preparation of zinc oxide (ZnO) nanoparticles using the Eucommia ulmoides bark-mediated polyisoprene-rich aqueous extract. Meanwhile, the proposed protocol is associated with the preparation of wound healing material by easing the process. In addition, the wound-healing potential of the synthesized nanoparticles (Eu-ZnO-NPs) was evaluated using a simple scratch assay on a human umbilical vein endothelial cell (HUVEC) monolayer. After 24 h of treatment with Eu-ZnO-NPs, the cell proliferation and migration of HUVEC cells were assessed. At the end of the study, cell proliferation and migration were observed in scratched monolayer treated with different concentrations of Eu-ZnO-NPs, whereas poor cell migration and proliferation rates were observed in control cells. Of the chosen concentrations, 20 µg/mL Eu-ZnO nanomaterials showed better cell migration and enhanced wound healing potential.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 214","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67416","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The aqueous extract from the bark of Eucommia ulmoides serves as a rich source of bioactive compounds with numerous health benefits. The protocol here aims to explore the preparation of zinc oxide (ZnO) nanoparticles using the Eucommia ulmoides bark-mediated polyisoprene-rich aqueous extract. Meanwhile, the proposed protocol is associated with the preparation of wound healing material by easing the process. In addition, the wound-healing potential of the synthesized nanoparticles (Eu-ZnO-NPs) was evaluated using a simple scratch assay on a human umbilical vein endothelial cell (HUVEC) monolayer. After 24 h of treatment with Eu-ZnO-NPs, the cell proliferation and migration of HUVEC cells were assessed. At the end of the study, cell proliferation and migration were observed in scratched monolayer treated with different concentrations of Eu-ZnO-NPs, whereas poor cell migration and proliferation rates were observed in control cells. Of the chosen concentrations, 20 µg/mL Eu-ZnO nanomaterials showed better cell migration and enhanced wound healing potential.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.