Automated characterisation of cerebral microbleeds using their size and spatial distribution on brain MRI.

IF 3.7 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Vaanathi Sundaresan, Giovanna Zamboni, Robert A Dineen, Dorothee P Auer, Stamatios N Sotiropoulos, Nikola Sprigg, Mark Jenkinson, Ludovica Griffanti
{"title":"Automated characterisation of cerebral microbleeds using their size and spatial distribution on brain MRI.","authors":"Vaanathi Sundaresan, Giovanna Zamboni, Robert A Dineen, Dorothee P Auer, Stamatios N Sotiropoulos, Nikola Sprigg, Mark Jenkinson, Ludovica Griffanti","doi":"10.1186/s41747-024-00544-z","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral microbleeds (CMBs) are small, hypointense hemosiderin deposits in the brain measuring 2-10 mm in diameter. As one of the important biomarkers of small vessel disease, they have been associated with various neurodegenerative and cerebrovascular diseases. Hence, automated detection, and subsequent extraction of clinically useful metrics (e.g., size and spatial distribution) from CMBs are essential for investigating their clinical impact, especially in large-scale studies. While some work has been done for CMB segmentation, extraction of clinically relevant information is not yet explored. Herein, we propose the first automated method to characterise CMBs using their size and spatial distribution, i.e., CMB count in three regions (and their substructures) used in Microbleed Anatomical Rating Scale (MARS): infratentorial, deep, and lobar. Our method uses structural atlases of the brain for determining individual regions. On an intracerebral haemorrhage study dataset, we achieved a mean absolute error of 2.5 mm for size estimation and an overall accuracy > 90% for automated rating. The code and the atlas of MARS regions in Montreal Neurological Institute-MNI space are publicly available. RELEVANCE STATEMENT: Our method to automatically characterise cerebral microbleeds (size and location) showed a mean absolute error of 2.5 mm for size estimation and an over 90% accuracy for rating of infratentorial, deep and lobar regions. This is a promising approach to automatically provide clinically relevant cerebral microbleeds metrics. KEY POINTS: We present a method to automatically characterise cerebral microbleeds according to size and location. The method achieved a mean absolute error of 2.5 mm for size estimation. Automated rating for infratentorial, deep, and lobar regions achieved an over 90% overall accuracy. We made the code and atlas of Microbleed Anatomical Rating Scale regions publicly available.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"9 1","pages":"5"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730040/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-024-00544-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Cerebral microbleeds (CMBs) are small, hypointense hemosiderin deposits in the brain measuring 2-10 mm in diameter. As one of the important biomarkers of small vessel disease, they have been associated with various neurodegenerative and cerebrovascular diseases. Hence, automated detection, and subsequent extraction of clinically useful metrics (e.g., size and spatial distribution) from CMBs are essential for investigating their clinical impact, especially in large-scale studies. While some work has been done for CMB segmentation, extraction of clinically relevant information is not yet explored. Herein, we propose the first automated method to characterise CMBs using their size and spatial distribution, i.e., CMB count in three regions (and their substructures) used in Microbleed Anatomical Rating Scale (MARS): infratentorial, deep, and lobar. Our method uses structural atlases of the brain for determining individual regions. On an intracerebral haemorrhage study dataset, we achieved a mean absolute error of 2.5 mm for size estimation and an overall accuracy > 90% for automated rating. The code and the atlas of MARS regions in Montreal Neurological Institute-MNI space are publicly available. RELEVANCE STATEMENT: Our method to automatically characterise cerebral microbleeds (size and location) showed a mean absolute error of 2.5 mm for size estimation and an over 90% accuracy for rating of infratentorial, deep and lobar regions. This is a promising approach to automatically provide clinically relevant cerebral microbleeds metrics. KEY POINTS: We present a method to automatically characterise cerebral microbleeds according to size and location. The method achieved a mean absolute error of 2.5 mm for size estimation. Automated rating for infratentorial, deep, and lobar regions achieved an over 90% overall accuracy. We made the code and atlas of Microbleed Anatomical Rating Scale regions publicly available.

利用脑MRI上脑微出血的大小和空间分布自动表征。
脑微出血(CMBs)是脑内小的、低强度的含铁血黄素沉积,直径为2- 10mm。作为小血管疾病的重要生物标志物之一,它们与各种神经退行性疾病和脑血管疾病有关。因此,从CMBs中自动检测并随后提取临床有用的指标(例如,大小和空间分布)对于调查其临床影响至关重要,特别是在大规模研究中。虽然在CMB分割方面已经做了一些工作,但临床相关信息的提取尚未探索。在此,我们提出了第一种自动化方法,利用它们的大小和空间分布来表征CMB,即微出血解剖分级量表(MARS)中使用的三个区域(及其亚结构)的CMB计数:幕下、深部和大叶。我们的方法使用大脑的结构图谱来确定单个区域。在脑出血研究数据集上,我们实现了尺寸估计的平均绝对误差为2.5 mm,自动评分的总体精度为bbb90 %。蒙特利尔神经学研究所- mni空间的MARS区域代码和地图集是公开的。相关声明:我们自动表征脑微出血(大小和位置)的方法显示,尺寸估计的平均绝对误差为2.5 mm,对幕下、深部和大叶区域的评分准确率超过90%。这是一种很有前途的方法,可以自动提供临床相关的脑微出血指标。重点:我们提出了一种根据大小和位置自动表征脑微出血的方法。该方法对尺寸估计的平均绝对误差为2.5 mm。对幕下、深部和脑叶区的自动评分达到了90%以上的总体准确率。我们公开了微出血解剖等级量表区域的代码和图谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Radiology Experimental
European Radiology Experimental Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
6.70
自引率
2.60%
发文量
56
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信