Microneedles as a Promising Technology for Disease Monitoring and Drug Delivery: A Review.

IF 5.7 Q2 CHEMISTRY, PHYSICAL
ACS Materials Au Pub Date : 2024-11-28 eCollection Date: 2025-01-08 DOI:10.1021/acsmaterialsau.4c00125
Rashmi Hulimane Shivaswamy, Pranav Binulal, Aloysious Benoy, Kaushik Lakshmiramanan, Nitu Bhaskar, Hardik Jeetendra Pandya
{"title":"Microneedles as a Promising Technology for Disease Monitoring and Drug Delivery: A Review.","authors":"Rashmi Hulimane Shivaswamy, Pranav Binulal, Aloysious Benoy, Kaushik Lakshmiramanan, Nitu Bhaskar, Hardik Jeetendra Pandya","doi":"10.1021/acsmaterialsau.4c00125","DOIUrl":null,"url":null,"abstract":"<p><p>The delivery of molecules, such as DNA, RNA, peptides, and certain hydrophilic drugs, across the epidermal barrier poses a significant obstacle. Microneedle technology has emerged as a prominent area of focus in biomedical research because of its ability to deliver a wide range of biomolecules, vaccines, medicines, and other substances through the skin. Microneedles (MNs) form microchannels by disrupting the skin's structure, which compromises its barrier function, and facilitating the easy penetration of drugs into the skin. These devices enhance the administration of many therapeutic substances to the skin, enhancing their stability. Transcutaneous delivery of medications using a microneedle patch offers advantages over conventional drug administration methods. Microneedles containing active substances can be stimulated by different internal and external factors to result in the regulated release of the substances. To achieve efficient drug administration to the desired location, it is necessary to consider the design of needles with appropriate optimized characteristics. The choice of materials for developing and manufacturing these devices is vital in determining the pharmacodynamics and pharmacokinetics of drug delivery. This article provides the most recent update and overview of the numerous microneedle systems that utilize different activators to stimulate the release of active components from the microneedles. Further, it discusses the materials utilized for producing microneedles and the design strategies important in managing the release of drugs. An explanation of the commonly employed fabrication techniques in biomedical applications and electronics, particularly for integrated microneedle drug delivery systems, is discussed. To successfully implement microneedle technology in clinical settings, it is essential to comprehensively assess several factors, such as biocompatibility, drug stability, safety, and production cost. Finally, an in-depth review of these criteria and the difficulties and potential future direction of microneedles in delivering drugs and monitoring diseases is explored.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 1","pages":"115-140"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718548/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmaterialsau.4c00125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The delivery of molecules, such as DNA, RNA, peptides, and certain hydrophilic drugs, across the epidermal barrier poses a significant obstacle. Microneedle technology has emerged as a prominent area of focus in biomedical research because of its ability to deliver a wide range of biomolecules, vaccines, medicines, and other substances through the skin. Microneedles (MNs) form microchannels by disrupting the skin's structure, which compromises its barrier function, and facilitating the easy penetration of drugs into the skin. These devices enhance the administration of many therapeutic substances to the skin, enhancing their stability. Transcutaneous delivery of medications using a microneedle patch offers advantages over conventional drug administration methods. Microneedles containing active substances can be stimulated by different internal and external factors to result in the regulated release of the substances. To achieve efficient drug administration to the desired location, it is necessary to consider the design of needles with appropriate optimized characteristics. The choice of materials for developing and manufacturing these devices is vital in determining the pharmacodynamics and pharmacokinetics of drug delivery. This article provides the most recent update and overview of the numerous microneedle systems that utilize different activators to stimulate the release of active components from the microneedles. Further, it discusses the materials utilized for producing microneedles and the design strategies important in managing the release of drugs. An explanation of the commonly employed fabrication techniques in biomedical applications and electronics, particularly for integrated microneedle drug delivery systems, is discussed. To successfully implement microneedle technology in clinical settings, it is essential to comprehensively assess several factors, such as biocompatibility, drug stability, safety, and production cost. Finally, an in-depth review of these criteria and the difficulties and potential future direction of microneedles in delivering drugs and monitoring diseases is explored.

微针作为一种有前景的疾病监测和给药技术:综述。
分子,如DNA、RNA、多肽和某些亲水性药物,跨越表皮屏障的传递构成了一个重大障碍。微针技术已成为生物医学研究的一个重点领域,因为它能够通过皮肤输送各种生物分子、疫苗、药物和其他物质。微针(MNs)通过破坏皮肤的结构形成微通道,从而损害其屏障功能,并促进药物容易渗透到皮肤中。这些装置增强了许多治疗物质对皮肤的管理,增强了它们的稳定性。使用微针贴片经皮给药比传统给药方法更有优势。含有活性物质的微针可以受到不同内外因素的刺激,使物质的释放受到调控。为了使给药达到理想的位置,有必要考虑具有适当优化特性的针的设计。用于开发和制造这些装置的材料的选择对于确定药物传递的药效学和药代动力学至关重要。本文提供了许多微针系统的最新更新和概述,这些微针系统利用不同的活化剂来刺激微针释放活性成分。此外,它还讨论了用于生产微针的材料和在管理药物释放中重要的设计策略。对生物医学应用和电子学中常用的制造技术,特别是集成微针给药系统的解释进行了讨论。为了在临床环境中成功实施微针技术,必须综合评估几个因素,如生物相容性、药物稳定性、安全性和生产成本。最后,对这些标准进行了深入的回顾,并探讨了微针在给药和监测疾病方面的困难和潜在的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信