Emerging models to study competitive interactions within bacterial communities.

IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mollie Virgo, Serge Mostowy, Brian T Ho
{"title":"Emerging models to study competitive interactions within bacterial communities.","authors":"Mollie Virgo, Serge Mostowy, Brian T Ho","doi":"10.1016/j.tim.2024.12.009","DOIUrl":null,"url":null,"abstract":"<p><p>Within both abiotic and host environments, bacteria typically exist as diverse, multispecies communities and have crucial roles in human health, agriculture, and industry. In these communities, bacteria compete for resources, and these competitive interactions can shape the overall population structure and community function. Studying bacterial community dynamics requires experimental model systems that capture the different interaction networks between bacteria and their surroundings. We examine the recent literature advancing such systems, including (i) in silico models establishing the theoretical basis for how cell-to-cell interactions can influence population level dynamics, (ii) in vitro models characterizing specific interbacterial interactions, (iii) organ-on-a-chip models revealing the physiologically relevant parameters, such as spatial structure and mechanical forces, that bacteria encounter within a host, and (iv) in vivo plant and animal models connecting the host responses to interbacterial interactions. Each of these systems has greatly contributed to our understanding of bacterial community dynamics and can be used synergistically to understand how bacterial competition influences population architecture.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2024.12.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Within both abiotic and host environments, bacteria typically exist as diverse, multispecies communities and have crucial roles in human health, agriculture, and industry. In these communities, bacteria compete for resources, and these competitive interactions can shape the overall population structure and community function. Studying bacterial community dynamics requires experimental model systems that capture the different interaction networks between bacteria and their surroundings. We examine the recent literature advancing such systems, including (i) in silico models establishing the theoretical basis for how cell-to-cell interactions can influence population level dynamics, (ii) in vitro models characterizing specific interbacterial interactions, (iii) organ-on-a-chip models revealing the physiologically relevant parameters, such as spatial structure and mechanical forces, that bacteria encounter within a host, and (iv) in vivo plant and animal models connecting the host responses to interbacterial interactions. Each of these systems has greatly contributed to our understanding of bacterial community dynamics and can be used synergistically to understand how bacterial competition influences population architecture.

研究细菌群落内竞争相互作用的新兴模型。
在非生物和宿主环境中,细菌通常以多种多样的多物种群落存在,在人类健康、农业和工业中起着至关重要的作用。在这些群落中,细菌竞争资源,这些竞争相互作用可以塑造整体种群结构和群落功能。研究细菌群落动力学需要实验模型系统来捕捉细菌和周围环境之间不同的相互作用网络。我们研究了最近推进此类系统的文献,包括(i)建立细胞间相互作用如何影响种群水平动力学的理论基础的硅模型,(ii)表征特定细菌间相互作用的体外模型,(iii)揭示细菌在宿主内遇到的空间结构和机械力等生理相关参数的芯片上器官模型,(iv)连接宿主对细菌间相互作用反应的体内植物和动物模型。这些系统中的每一个都极大地促进了我们对细菌群落动态的理解,并且可以协同使用来理解细菌竞争如何影响种群结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Microbiology
Trends in Microbiology 生物-生化与分子生物学
CiteScore
25.30
自引率
0.60%
发文量
193
审稿时长
6-12 weeks
期刊介绍: Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信