Muhammad Asif, Mohammad Abrar, Abdu Salam, Farhan Amin, Faizan Ullah, Sabir Shah, Hussain AlSalman
{"title":"Intelligent two-phase dual authentication framework for Internet of Medical Things.","authors":"Muhammad Asif, Mohammad Abrar, Abdu Salam, Farhan Amin, Faizan Ullah, Sabir Shah, Hussain AlSalman","doi":"10.1038/s41598-024-84713-5","DOIUrl":null,"url":null,"abstract":"<p><p>The Internet of Medical Things (IoMT) has revolutionized healthcare by bringing real-time monitoring and data-driven treatments. Nevertheless, the security of communication between IoMT devices and servers remains a huge problem because of the inherent sensitivity of the health data and susceptibility to cyber threats. Current security solutions, including simple password-based authentication and standard Public Key Infrastructure (PKI) approaches, typically do not achieve an appropriate balance between security and low computational overhead, resulting in the possibility of performance bottlenecks and increased vulnerability to attacks. To overcome these limitations, we present an intelligent two-phase dual authentication framework that improves the security of sensor-to-server communication in IoMT environments. During the registration phase, our framework is based on Elliptic Curve Diffie-Hellman (ECDH) for rapid key exchange, and during real-time communication, our framework uses the Advanced Encryption Standard Galois Counter Mode (AES-GCM) to encrypt data securely. The efficiency of the proposed framework was rigorously tested through simulations that evaluated encryption-decryption time, computational cost, latency, and packet delivery ratio. The security resilience was also evaluated against man-in-the-middle, replay, and brute force attacks. The results show that encryption/decryption time is reduced by over 45%, overall computational cost by 45.38%, and latency by 28.42% over existing approaches. Furthermore, the framework achieved a high packet delivery ratio and strong defense against cyber threats for maintaining the confidentiality and integrity of the medical data across IoMT networks. However, the dual authentication approach doesn't affect the functionality of medical IoT devices while enhancing IoMT security, which makes it an ideal integration option for existing healthcare systems.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"1760"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725583/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-84713-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Medical Things (IoMT) has revolutionized healthcare by bringing real-time monitoring and data-driven treatments. Nevertheless, the security of communication between IoMT devices and servers remains a huge problem because of the inherent sensitivity of the health data and susceptibility to cyber threats. Current security solutions, including simple password-based authentication and standard Public Key Infrastructure (PKI) approaches, typically do not achieve an appropriate balance between security and low computational overhead, resulting in the possibility of performance bottlenecks and increased vulnerability to attacks. To overcome these limitations, we present an intelligent two-phase dual authentication framework that improves the security of sensor-to-server communication in IoMT environments. During the registration phase, our framework is based on Elliptic Curve Diffie-Hellman (ECDH) for rapid key exchange, and during real-time communication, our framework uses the Advanced Encryption Standard Galois Counter Mode (AES-GCM) to encrypt data securely. The efficiency of the proposed framework was rigorously tested through simulations that evaluated encryption-decryption time, computational cost, latency, and packet delivery ratio. The security resilience was also evaluated against man-in-the-middle, replay, and brute force attacks. The results show that encryption/decryption time is reduced by over 45%, overall computational cost by 45.38%, and latency by 28.42% over existing approaches. Furthermore, the framework achieved a high packet delivery ratio and strong defense against cyber threats for maintaining the confidentiality and integrity of the medical data across IoMT networks. However, the dual authentication approach doesn't affect the functionality of medical IoT devices while enhancing IoMT security, which makes it an ideal integration option for existing healthcare systems.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.