Functional connectome gradient of prefrontal cortex as biomarkers of high risk for internet gaming disorder.

IF 4.7 2区 医学 Q1 NEUROIMAGING
Xinwen Wen, Lirong Yue, Zhe Du, Jiahao Zhao, Mengjiao Ge, Cunfeng Yuan, Hongmei Wang, Qinghua He, Kai Yuan
{"title":"Functional connectome gradient of prefrontal cortex as biomarkers of high risk for internet gaming disorder.","authors":"Xinwen Wen, Lirong Yue, Zhe Du, Jiahao Zhao, Mengjiao Ge, Cunfeng Yuan, Hongmei Wang, Qinghua He, Kai Yuan","doi":"10.1016/j.neuroimage.2025.121010","DOIUrl":null,"url":null,"abstract":"<p><p>Adolescents and young adults are considered a high-risk group for internet gaming disorder (IGD). Early screening for high-risk individuals with IGD and exploring the underlying neural mechanisms is an effective strategy to reduce the harm of IGD. We recruited 219 non-internet gaming addicted college students and evaluated them with magnetic resonance imaging, followed by a two-year longitudinal follow-up. We used functional connectome gradient (FCG) to capture the macroscopic hierarchical organization of human brain. Canonical correlation analysis was employed to identify components mapping relationships between FCG and behavioral scores. Consequently, K-means clustering was used to define distinct subtypes. The risk of developing IGD and FCG patterns were compared among the subtypes. Three subtypes were identified and subtype 3 exhibited the highest risk for developing IGD according to the occurrence rates of IGD two years later: (1) subtype 1 (5.3%, 4 participants), (2) subtype 2 (10.8%, 9 participants), (3) subtype 3 (20%, 12 participants). The abnormal FCG in the inferior frontal gyrus and posterior cingulate cortex at baseline were observed in subtype 3, which were correlated with impulsivity. These findings advanced understanding of the biological and behavioral heterogeneity associated with developing of IGD, and represented a promising step toward the prediction of high-risk individuals.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"121010"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2025.121010","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Adolescents and young adults are considered a high-risk group for internet gaming disorder (IGD). Early screening for high-risk individuals with IGD and exploring the underlying neural mechanisms is an effective strategy to reduce the harm of IGD. We recruited 219 non-internet gaming addicted college students and evaluated them with magnetic resonance imaging, followed by a two-year longitudinal follow-up. We used functional connectome gradient (FCG) to capture the macroscopic hierarchical organization of human brain. Canonical correlation analysis was employed to identify components mapping relationships between FCG and behavioral scores. Consequently, K-means clustering was used to define distinct subtypes. The risk of developing IGD and FCG patterns were compared among the subtypes. Three subtypes were identified and subtype 3 exhibited the highest risk for developing IGD according to the occurrence rates of IGD two years later: (1) subtype 1 (5.3%, 4 participants), (2) subtype 2 (10.8%, 9 participants), (3) subtype 3 (20%, 12 participants). The abnormal FCG in the inferior frontal gyrus and posterior cingulate cortex at baseline were observed in subtype 3, which were correlated with impulsivity. These findings advanced understanding of the biological and behavioral heterogeneity associated with developing of IGD, and represented a promising step toward the prediction of high-risk individuals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信