Driving brain state transitions via Adaptive Local Energy Control Model.

IF 4.7 2区 医学 Q1 NEUROIMAGING
Rong Yao, Langhua Shi, Yan Niu, HaiFang Li, Xing Fan, Bin Wang
{"title":"Driving brain state transitions via Adaptive Local Energy Control Model.","authors":"Rong Yao, Langhua Shi, Yan Niu, HaiFang Li, Xing Fan, Bin Wang","doi":"10.1016/j.neuroimage.2025.121023","DOIUrl":null,"url":null,"abstract":"<p><p>The brain, as a complex system, achieves state transitions through interactions among its regions and also performs various functions. An in-depth exploration of brain state transitions is crucial for revealing functional changes in both health and pathological states and realizing precise brain function intervention. Network control theory offers a novel framework for investigating the dynamic characteristics of brain state transitions. Existing studies have primarily focused on analyzing the energy required for brain state transitions, which are driven either by the single brain region or by all brain regions. However, they often neglect the critical question of how the whole brain responds to external control inputs that are driven by control energy from multiple brain regions, which limits their application value in guiding clinical neurostimulation. In this paper, we proposed the Adaptive Local Energy Control Model (ALECM) to explore brain state transitions, which considers the complex interactions of the whole brain along the white matter network when external control inputs are applied to multiple regions. It not only quantifies the energy required for state transitions but also predicts their outcomes based on local control. Our results indicated that patients with Schizophrenia (SZ) and Bipolar Disorder (BD) required more energy to drive the brain state transitions from the pathological state to the healthy baseline state, which is defined as Hetero-state transition. Importantly, we successfully induced Hetero-state transition in the patients' brains by using the ALECM, with subnetworks or specific brain regions serving as local control sets. Eventually, the network similarity between patients and healthy subjects reached baseline levels. These offer evidence that the ALECM can effectively quantify the cost characteristics of brain state transitions, providing a theoretical foundation for accurately predicting the efficacy of electromagnetic perturbation therapies in the future.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"121023"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2025.121023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The brain, as a complex system, achieves state transitions through interactions among its regions and also performs various functions. An in-depth exploration of brain state transitions is crucial for revealing functional changes in both health and pathological states and realizing precise brain function intervention. Network control theory offers a novel framework for investigating the dynamic characteristics of brain state transitions. Existing studies have primarily focused on analyzing the energy required for brain state transitions, which are driven either by the single brain region or by all brain regions. However, they often neglect the critical question of how the whole brain responds to external control inputs that are driven by control energy from multiple brain regions, which limits their application value in guiding clinical neurostimulation. In this paper, we proposed the Adaptive Local Energy Control Model (ALECM) to explore brain state transitions, which considers the complex interactions of the whole brain along the white matter network when external control inputs are applied to multiple regions. It not only quantifies the energy required for state transitions but also predicts their outcomes based on local control. Our results indicated that patients with Schizophrenia (SZ) and Bipolar Disorder (BD) required more energy to drive the brain state transitions from the pathological state to the healthy baseline state, which is defined as Hetero-state transition. Importantly, we successfully induced Hetero-state transition in the patients' brains by using the ALECM, with subnetworks or specific brain regions serving as local control sets. Eventually, the network similarity between patients and healthy subjects reached baseline levels. These offer evidence that the ALECM can effectively quantify the cost characteristics of brain state transitions, providing a theoretical foundation for accurately predicting the efficacy of electromagnetic perturbation therapies in the future.

求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信