Intracellular Retention of Estradiol Is Mediated by GRAM Domain-Containing Protein ASTER-B in Breast Cancer Cells.

IF 4.1 2区 医学 Q2 CELL BIOLOGY
Hyung Bum Kim, W Lee Kraus
{"title":"Intracellular Retention of Estradiol Is Mediated by GRAM Domain-Containing Protein ASTER-B in Breast Cancer Cells.","authors":"Hyung Bum Kim, W Lee Kraus","doi":"10.1158/1541-7786.MCR-24-0533","DOIUrl":null,"url":null,"abstract":"<p><p>Elevated blood levels of estrogens have been associated with poor prognosis in estrogen receptor-positive (ER+) breast cancers, but the relationship between circulating hormone levels in the blood and intracellular hormone concentrations is not well characterized. We observed that MCF-7 cells treated acutely with 17β-estradiol (E2) retain a substantial amount of the hormone even upon the removal of the hormone from the culture medium. Moreover, global patterns of E2-dependent gene expression are sustained for hours after acute E2 treatment and hormone removal. Although circulating E2 is sequestered by sex hormone binding globulin, the potential mechanisms of intracellular E2 retention are poorly understood. We found that mislocalization of a steroid-binding GRAM domain-containing protein, ASTER-B, to the nucleus, which is observed in a subset of patients with breast cancer, is associated with higher cellular E2 retention. Accumulation and retention of E2 are related to the steroidal properties of E2 and require nuclear localization and steroid binding by ASTER-B, as shown using a panel of mutant ASTER-B proteins. Finally, we observed that nuclear ASTER-B-mediated E2 retention is required for sustained hormone-induced ERα chromatin occupancy at enhancers and gene expression, as well as subsequent cell growth responses. Our results add intracellular hormone retention as a mechanism controlling E2-dependent gene expression and downstream biological outcomes. Implications: Mislocalized nuclear ASTER-B, which binds estradiol to support the functions of ER, can provide an alternate means of enhancing the biological effects of E2 in breast cancers and may be a potential therapeutic target that addresses multiple aspects of estrogen bioavailability.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"313-326"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961310/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-24-0533","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Elevated blood levels of estrogens have been associated with poor prognosis in estrogen receptor-positive (ER+) breast cancers, but the relationship between circulating hormone levels in the blood and intracellular hormone concentrations is not well characterized. We observed that MCF-7 cells treated acutely with 17β-estradiol (E2) retain a substantial amount of the hormone even upon the removal of the hormone from the culture medium. Moreover, global patterns of E2-dependent gene expression are sustained for hours after acute E2 treatment and hormone removal. Although circulating E2 is sequestered by sex hormone binding globulin, the potential mechanisms of intracellular E2 retention are poorly understood. We found that mislocalization of a steroid-binding GRAM domain-containing protein, ASTER-B, to the nucleus, which is observed in a subset of patients with breast cancer, is associated with higher cellular E2 retention. Accumulation and retention of E2 are related to the steroidal properties of E2 and require nuclear localization and steroid binding by ASTER-B, as shown using a panel of mutant ASTER-B proteins. Finally, we observed that nuclear ASTER-B-mediated E2 retention is required for sustained hormone-induced ERα chromatin occupancy at enhancers and gene expression, as well as subsequent cell growth responses. Our results add intracellular hormone retention as a mechanism controlling E2-dependent gene expression and downstream biological outcomes. Implications: Mislocalized nuclear ASTER-B, which binds estradiol to support the functions of ER, can provide an alternate means of enhancing the biological effects of E2 in breast cancers and may be a potential therapeutic target that addresses multiple aspects of estrogen bioavailability.

乳腺癌细胞中含有GRAM结构域的蛋白ASTER-B介导雌二醇的细胞内滞留。
雌激素受体阳性(ER+)乳腺癌患者血中雌激素水平升高与预后不良相关,但循环血中激素水平与细胞内激素浓度之间的关系尚不清楚。我们观察到,即使从培养基中去除激素,经17β-雌二醇(E2)急性处理的MCF-7细胞仍保留了大量的激素。此外,E2依赖性基因表达的全局模式在急性E2治疗和激素去除后持续数小时。虽然循环中的E2被性激素结合球蛋白(SHBG)隔离,但细胞内E2滞留的潜在机制尚不清楚。我们发现,在一部分乳腺癌患者中观察到的含有类固醇结合克结构域的蛋白ASTER-B在细胞核中的错误定位与较高的细胞E2保留有关。E2的积累和保留与E2的甾体特性有关,并且需要细胞核定位和与ASTER-B的类固醇结合,如图所示为一组突变的ASTER-B蛋白。最后,我们观察到核aster - b介导的E2保留是持续激素诱导的er - α染色质占用增强子和基因表达以及随后的细胞生长反应所必需的。我们的研究结果表明细胞内激素保留是控制e2依赖基因表达和下游生物学结果的机制。结论:错定位的核ASTER-B结合雌二醇支持ER的功能,可以提供一种增强E2在乳腺癌中的生物学效应的替代方法,并且可能是解决雌激素生物利用度多个方面的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Cancer Research
Molecular Cancer Research 医学-细胞生物学
CiteScore
9.90
自引率
0.00%
发文量
280
审稿时长
4-8 weeks
期刊介绍: Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信