TIPPo: A User-Friendly Tool for De Novo Assembly of Organellar Genomes with High-Fidelity Data.

IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Wenfei Xian, Ilja Bezrukov, Zhigui Bao, Sebastian Vorbrugg, Anupam Gautam, Detlef Weigel
{"title":"TIPPo: A User-Friendly Tool for De Novo Assembly of Organellar Genomes with High-Fidelity Data.","authors":"Wenfei Xian, Ilja Bezrukov, Zhigui Bao, Sebastian Vorbrugg, Anupam Gautam, Detlef Weigel","doi":"10.1093/molbev/msae247","DOIUrl":null,"url":null,"abstract":"<p><p>Plant cells have two major organelles with their own genomes: chloroplasts and mitochondria. While chloroplast genomes tend to be structurally conserved, the mitochondrial genomes of plants, which are much larger than those of animals, are characterized by complex structural variation. We introduce TIPPo, a user-friendly, reference-free assembly tool that uses PacBio high-fidelity long-read data and that does not rely on genomes from related species or nuclear genome information for the assembly of organellar genomes. TIPPo employs a deep learning model for initial read classification and leverages k-mer counting for further refinement, significantly reducing the impact of nuclear insertions of organellar DNA on the assembly process. We used TIPPo to completely assemble a set of 54 complete chloroplast genomes. No other tool was able to completely assemble this set. TIPPo is comparable with PMAT in assembling mitochondrial genomes from most species but does achieve even higher completeness for several species. We also used the assembled organelle genomes to identify instances of nuclear plastid DNA (NUPTs) and nuclear mitochondrial DNA (NUMTs) insertions. The cumulative length of NUPTs/NUMTs positively correlates with the size of the nuclear genome, suggesting that insertions occur stochastically. NUPTs/NUMTs show predominantly C:G to T:A changes, with the mutated cytosines typically found in CG and CHG contexts, suggesting that degradation of NUPT and NUMT sequences is driven by the known elevated mutation rate of methylated cytosines. Small interfering RNA loci are enriched in NUPTs and NUMTs, consistent with the RdDM pathway mediating DNA methylation in these sequences.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":"42 1","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725521/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msae247","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant cells have two major organelles with their own genomes: chloroplasts and mitochondria. While chloroplast genomes tend to be structurally conserved, the mitochondrial genomes of plants, which are much larger than those of animals, are characterized by complex structural variation. We introduce TIPPo, a user-friendly, reference-free assembly tool that uses PacBio high-fidelity long-read data and that does not rely on genomes from related species or nuclear genome information for the assembly of organellar genomes. TIPPo employs a deep learning model for initial read classification and leverages k-mer counting for further refinement, significantly reducing the impact of nuclear insertions of organellar DNA on the assembly process. We used TIPPo to completely assemble a set of 54 complete chloroplast genomes. No other tool was able to completely assemble this set. TIPPo is comparable with PMAT in assembling mitochondrial genomes from most species but does achieve even higher completeness for several species. We also used the assembled organelle genomes to identify instances of nuclear plastid DNA (NUPTs) and nuclear mitochondrial DNA (NUMTs) insertions. The cumulative length of NUPTs/NUMTs positively correlates with the size of the nuclear genome, suggesting that insertions occur stochastically. NUPTs/NUMTs show predominantly C:G to T:A changes, with the mutated cytosines typically found in CG and CHG contexts, suggesting that degradation of NUPT and NUMT sequences is driven by the known elevated mutation rate of methylated cytosines. Small interfering RNA loci are enriched in NUPTs and NUMTs, consistent with the RdDM pathway mediating DNA methylation in these sequences.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular biology and evolution
Molecular biology and evolution 生物-进化生物学
CiteScore
19.70
自引率
3.70%
发文量
257
审稿时长
1 months
期刊介绍: Molecular Biology and Evolution Journal Overview: Publishes research at the interface of molecular (including genomics) and evolutionary biology Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信