Gyuho Choi , Yerim Cha , Tae-Jin Kim , Gah-Hyun Lim
{"title":"Optimization of FRET imaging in Arabidopsis protoplasts","authors":"Gyuho Choi , Yerim Cha , Tae-Jin Kim , Gah-Hyun Lim","doi":"10.1016/j.mocell.2025.100180","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advancements in fluorescence-based biosensor technologies have enabled more precise and accurate Förster resonance energy transfer (FRET) imaging within <em>Agrobacterium</em>-mediated plant transformation systems. However, the application of FRET imaging in plant tissues remains hindered by significant challenges, particularly the time-intensive process of generating transgenic lines and the complications arising from tissue autofluorescence. In contrast, protoplast-based FRET imaging offers a rapid and efficient platform for functional screening and analysis, making it an essential tool for plant research. Nevertheless, conventional protoplast-based FRET approaches are often limited by background interference, inconsistent imaging conditions, and difficulties in quantitative analysis. Here, we present a systematic optimization of imaging conditions using the calcium biosensor D3cpv, addressing these limitations to improve both precision and efficiency in protoplast-based FRET imaging. This work serves as a practical guide for streamlining FRET imaging workflows and maximizing the utility of biosensors in plant cell studies.</div></div>","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":"48 3","pages":"Article 100180"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules and Cells","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1016847825000044","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in fluorescence-based biosensor technologies have enabled more precise and accurate Förster resonance energy transfer (FRET) imaging within Agrobacterium-mediated plant transformation systems. However, the application of FRET imaging in plant tissues remains hindered by significant challenges, particularly the time-intensive process of generating transgenic lines and the complications arising from tissue autofluorescence. In contrast, protoplast-based FRET imaging offers a rapid and efficient platform for functional screening and analysis, making it an essential tool for plant research. Nevertheless, conventional protoplast-based FRET approaches are often limited by background interference, inconsistent imaging conditions, and difficulties in quantitative analysis. Here, we present a systematic optimization of imaging conditions using the calcium biosensor D3cpv, addressing these limitations to improve both precision and efficiency in protoplast-based FRET imaging. This work serves as a practical guide for streamlining FRET imaging workflows and maximizing the utility of biosensors in plant cell studies.
期刊介绍:
Molecules and Cells is an international on-line open-access journal devoted to the advancement and dissemination of fundamental knowledge in molecular and cellular biology. It was launched in 1990 and ISO abbreviation is "Mol. Cells". Reports on a broad range of topics of general interest to molecular and cell biologists are published. It is published on the last day of each month by the Korean Society for Molecular and Cellular Biology.