{"title":"MaGA20ox2f, an OsSD1 homolog, regulates flowering time and fruit yield in banana.","authors":"Wei Zhao, Xiaoxuan Sun, Shaoping Wu, Shuofan Wu, Chunhua Hu, Heqiang Huo, Guiming Deng, Ou Sheng, Fangcheng Bi, Weidi He, Tongxin Dou, Tao Dong, Chunyu Li, Siwen Liu, Huijun Gao, Chunlong Li, Ganjun Yi, Qiaosong Yang","doi":"10.1007/s11032-024-01523-3","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies illustrated that two banana GA20 oxidase2 (MaGA20ox2) genes, <i>Ma04g15900</i> and <i>Ma08g32850</i>, are implicated in controlling banana growth and development; however, the biological function of each gene remains unknown. Ma04g15900 protein (termed MaGA20ox2f in this article) is the closest homolog to the Rice SD1 (encoded by 'green revolution gene', <i>OsSD1</i>) in the banana genome. The expression of <i>MaGA20ox2f</i> is confined to leaves, peduncles, fruit peels, and pulp. Knockout of <i>MaGA20ox2f</i> by CRISPR/Cas9 led to late flowering and low-yielding phenotypes. The flowering time of <i>ΔMaGA20ox2f</i> #1 and <i>∆MaGA20ox2f</i> #2 lines was delayed approximately by 61 and 58 days, respectively, while fruit yield decreased by 81.13% and 76.23% compared to wild type under normal conditions. The endogenous levels of downstream products of GA20 oxidase, GA15 and GA20, were significantly reduced in <i>∆MaGA20ox2f</i> mutant shoots and fruits, but bioactive GA1 was only significantly reduced in the mutant fruits. Quantitative proteomics analysis identified 118 up-regulated proteins and 309 down-regulated proteins in both <i>ΔMaGA20ox2f</i> #1 and <i>∆MaGA20ox2f</i> #2 lines, compared to wild type, with the down-regulated proteins primarily associated with photosynthesis, porphyrin and chlorophyll metabolism. The decreased chlorophyll contents in <i>ΔMaGA20ox2f</i> #1 and <i>∆MaGA20ox2f</i> #2 lines corroborated the findings of the proteomics data. We propose that photosynthesis inhibition caused by lower chlorophyll contents in <i>ΔMaGA20ox2f</i> mutant leaves and GA1 deficiency in <i>ΔMaGA20ox2f</i> mutant fruits may be the two critical reasons contributing to the late flowering and low-yielding phenotypes of <i>ΔMaGA20ox2f</i> mutants.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-024-01523-3.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 1","pages":"12"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717755/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-024-01523-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies illustrated that two banana GA20 oxidase2 (MaGA20ox2) genes, Ma04g15900 and Ma08g32850, are implicated in controlling banana growth and development; however, the biological function of each gene remains unknown. Ma04g15900 protein (termed MaGA20ox2f in this article) is the closest homolog to the Rice SD1 (encoded by 'green revolution gene', OsSD1) in the banana genome. The expression of MaGA20ox2f is confined to leaves, peduncles, fruit peels, and pulp. Knockout of MaGA20ox2f by CRISPR/Cas9 led to late flowering and low-yielding phenotypes. The flowering time of ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines was delayed approximately by 61 and 58 days, respectively, while fruit yield decreased by 81.13% and 76.23% compared to wild type under normal conditions. The endogenous levels of downstream products of GA20 oxidase, GA15 and GA20, were significantly reduced in ∆MaGA20ox2f mutant shoots and fruits, but bioactive GA1 was only significantly reduced in the mutant fruits. Quantitative proteomics analysis identified 118 up-regulated proteins and 309 down-regulated proteins in both ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines, compared to wild type, with the down-regulated proteins primarily associated with photosynthesis, porphyrin and chlorophyll metabolism. The decreased chlorophyll contents in ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines corroborated the findings of the proteomics data. We propose that photosynthesis inhibition caused by lower chlorophyll contents in ΔMaGA20ox2f mutant leaves and GA1 deficiency in ΔMaGA20ox2f mutant fruits may be the two critical reasons contributing to the late flowering and low-yielding phenotypes of ΔMaGA20ox2f mutants.
Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01523-3.
期刊介绍:
Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer.
All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others.
Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards.
Molecular Breeding core areas:
Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.