Cryo-SEM and large volume FIB-SEM of Arabidopsis cotyledons: Degradation of lipid bodies, biogenesis of glyoxysomes and reorganisation of organelles during germination.
Gerhard Wanner, Elizabeth Schroeder-Reiter, Farhah F Assaad
{"title":"Cryo-SEM and large volume FIB-SEM of Arabidopsis cotyledons: Degradation of lipid bodies, biogenesis of glyoxysomes and reorganisation of organelles during germination.","authors":"Gerhard Wanner, Elizabeth Schroeder-Reiter, Farhah F Assaad","doi":"10.1111/jmi.13381","DOIUrl":null,"url":null,"abstract":"<p><p>Until recently, the lack of three-dimensional visualisation of whole cells at the electron microscopic (EM) level has led to a significant gap in our understanding of the interaction of cellular organelles and their interconnection. This is particularly true with regard to the role of the endoplasmic reticulum (ER). In this study, we perform three-dimensional reconstructions of serial FIB/SEM stacks and anaglyphs derived from volume rendering, cryo-scanning electron microscopy (cryo-SEM) and state-of-the-art electron microscopy immobilisation and imaging techniques. The results show that glyoxysomes are formed de novo in large numbers and in characteristic clusters on the ER upon germination in mesophyll cells of Arabidopsis cotyledons. The degradation of lipid bodies during germination occurs not only via the ER, which enlarges by taking up polar lipids resulting from enzymatic degradation by lipases, but also via glyoxysomes, which engulf lipid bodies. Dictyosomal (Golgi-derived) vesicles, which fuse with glyoxysomes or their precursors, also appear to be involved in the differentiation of glyoxysomes from segments of the ER. The formation of the central vacuole is the result of the fusion of protein storage vacuoles (protein bodies), which become complex three-dimensional structures during germination. Our observations also suggest that the vacuole plays a role in the degradation of glyoxysomes. The evidence provided in three dimensions shows that the endoplasmic reticulum plays a central role in the biogenesis and degradation of lipid bodies, the ontogeny of glyoxysomes and the development of plastids in the mesophyll cells of Arabidopsis cotyledons.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13381","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Until recently, the lack of three-dimensional visualisation of whole cells at the electron microscopic (EM) level has led to a significant gap in our understanding of the interaction of cellular organelles and their interconnection. This is particularly true with regard to the role of the endoplasmic reticulum (ER). In this study, we perform three-dimensional reconstructions of serial FIB/SEM stacks and anaglyphs derived from volume rendering, cryo-scanning electron microscopy (cryo-SEM) and state-of-the-art electron microscopy immobilisation and imaging techniques. The results show that glyoxysomes are formed de novo in large numbers and in characteristic clusters on the ER upon germination in mesophyll cells of Arabidopsis cotyledons. The degradation of lipid bodies during germination occurs not only via the ER, which enlarges by taking up polar lipids resulting from enzymatic degradation by lipases, but also via glyoxysomes, which engulf lipid bodies. Dictyosomal (Golgi-derived) vesicles, which fuse with glyoxysomes or their precursors, also appear to be involved in the differentiation of glyoxysomes from segments of the ER. The formation of the central vacuole is the result of the fusion of protein storage vacuoles (protein bodies), which become complex three-dimensional structures during germination. Our observations also suggest that the vacuole plays a role in the degradation of glyoxysomes. The evidence provided in three dimensions shows that the endoplasmic reticulum plays a central role in the biogenesis and degradation of lipid bodies, the ontogeny of glyoxysomes and the development of plastids in the mesophyll cells of Arabidopsis cotyledons.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.