Elham Foadian, Sheryl Sanchez, Sergei V Kalinin, Mahshid Ahmadi
{"title":"From Sunlight to Solutions: Closing the Loop on Halide Perovskites.","authors":"Elham Foadian, Sheryl Sanchez, Sergei V Kalinin, Mahshid Ahmadi","doi":"10.1021/acsmaterialsau.4c00096","DOIUrl":null,"url":null,"abstract":"<p><p>Halide perovskites (HPs) are emerging as key materials in the fight against global warming with well recognized applications, such as photovoltaics, and emergent opportunities, such as photocatalysis for methane removal and environmental remediation. These current and emergent applications are enabled by a unique combination of high absorption coefficients, tunable band gaps, and long carrier diffusion lengths, making them highly efficient for solar energy conversion. To address the challenge of discovery and optimization of HPs in huge chemical and compositional spaces of possible candidates, this perspective discusses a comprehensive strategy for screening HPs through automated high-throughput and combinatorial synthesis techniques. A critical aspect of this approach is closing the characterization loop, where machine learning (ML) and human collaboration play pivotal roles. By leveraging human creativity and domain knowledge for hypothesis generation and employing ML to test and refine these hypotheses efficiently, we aim to accelerate the discovery and optimization of HPs under specific environmental conditions. This synergy enables rapid identification of the most promising materials, advancing from fundamental discovery to scalable manufacturability. Our ultimate goal of this work is to transition from laboratory-scale innovations to real-world applications, ensuring that HPs can be deployed effectively in technologies that mitigate global warming, such as in solar energy harvesting and methane removal systems.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 1","pages":"11-23"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718539/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmaterialsau.4c00096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Halide perovskites (HPs) are emerging as key materials in the fight against global warming with well recognized applications, such as photovoltaics, and emergent opportunities, such as photocatalysis for methane removal and environmental remediation. These current and emergent applications are enabled by a unique combination of high absorption coefficients, tunable band gaps, and long carrier diffusion lengths, making them highly efficient for solar energy conversion. To address the challenge of discovery and optimization of HPs in huge chemical and compositional spaces of possible candidates, this perspective discusses a comprehensive strategy for screening HPs through automated high-throughput and combinatorial synthesis techniques. A critical aspect of this approach is closing the characterization loop, where machine learning (ML) and human collaboration play pivotal roles. By leveraging human creativity and domain knowledge for hypothesis generation and employing ML to test and refine these hypotheses efficiently, we aim to accelerate the discovery and optimization of HPs under specific environmental conditions. This synergy enables rapid identification of the most promising materials, advancing from fundamental discovery to scalable manufacturability. Our ultimate goal of this work is to transition from laboratory-scale innovations to real-world applications, ensuring that HPs can be deployed effectively in technologies that mitigate global warming, such as in solar energy harvesting and methane removal systems.
期刊介绍:
ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications