Reliability of running gait variability measures calculated from inertial measurement units.

IF 2.4 3区 医学 Q3 BIOPHYSICS
Journal of biomechanics Pub Date : 2025-02-01 Epub Date: 2025-01-03 DOI:10.1016/j.jbiomech.2025.112515
Ben D M Jones, Jon Wheat, Kane Middleton, David L Carey, Ben Heller
{"title":"Reliability of running gait variability measures calculated from inertial measurement units.","authors":"Ben D M Jones, Jon Wheat, Kane Middleton, David L Carey, Ben Heller","doi":"10.1016/j.jbiomech.2025.112515","DOIUrl":null,"url":null,"abstract":"<p><p>Changes to the variability within biomechanical signals may reflect a change in the health of the human system. However, for running gait variability measures calculated from wearable device data, it is unknown whether a between-day difference reflects a shift in system dynamics reflective of a change in human health or is a result of poor between-day reliability of the measurement device or the biomechanical signal. This study investigated the reliability of stride time and sacral acceleration variability measures calculated from inertial measurement units (IMUs). Nineteen runners completed six treadmill running trials on two occasions seven days apart. Stride time and sacral acceleration signals were obtained using IMUs. Stride time variability and complexity were calculated using the coefficient of variation (CV) and detrended fluctuation analysis (DFA), respectively. Sacral acceleration regularity was quantified using sample entropy with a range of input parameters m (vector length) and r (similarity threshold). Between-day reliability was assessed using the intraclass correlation coefficient (ICC), standard error of measurement (SEM) and minimum detectable change. Stride time CV displayed moderate relative reliability (ICC = 0.672), but with a large absolute minimum detectable change = 0.525 %, whilst stride time DFA-α displayed poor relative reliability (ICC = 0.457) and yielded large minimum detectable changes (≥ 0.208). Sample entropy displayed good relative reliability in mediolateral and resultant sacral acceleration signals for certain combinations of the parameters m and r, although again with large minimum detectable changes. Researchers should be cognisant of these reliability metrics when interpreting changes in running gait variability measures in clinical contexts.</p>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"180 ","pages":"112515"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiomech.2025.112515","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Changes to the variability within biomechanical signals may reflect a change in the health of the human system. However, for running gait variability measures calculated from wearable device data, it is unknown whether a between-day difference reflects a shift in system dynamics reflective of a change in human health or is a result of poor between-day reliability of the measurement device or the biomechanical signal. This study investigated the reliability of stride time and sacral acceleration variability measures calculated from inertial measurement units (IMUs). Nineteen runners completed six treadmill running trials on two occasions seven days apart. Stride time and sacral acceleration signals were obtained using IMUs. Stride time variability and complexity were calculated using the coefficient of variation (CV) and detrended fluctuation analysis (DFA), respectively. Sacral acceleration regularity was quantified using sample entropy with a range of input parameters m (vector length) and r (similarity threshold). Between-day reliability was assessed using the intraclass correlation coefficient (ICC), standard error of measurement (SEM) and minimum detectable change. Stride time CV displayed moderate relative reliability (ICC = 0.672), but with a large absolute minimum detectable change = 0.525 %, whilst stride time DFA-α displayed poor relative reliability (ICC = 0.457) and yielded large minimum detectable changes (≥ 0.208). Sample entropy displayed good relative reliability in mediolateral and resultant sacral acceleration signals for certain combinations of the parameters m and r, although again with large minimum detectable changes. Researchers should be cognisant of these reliability metrics when interpreting changes in running gait variability measures in clinical contexts.

由惯性测量单元计算的跑步步态变异性测量的可靠性。
生物力学信号变异性的变化可能反映了人体系统健康状况的变化。然而,对于从可穿戴设备数据计算的跑步步态变异性测量,尚不清楚日差是否反映了反映人类健康变化的系统动力学的变化,还是由于测量设备或生物力学信号的日差可靠性。本研究探讨了从惯性测量单元(imu)计算的步幅时间和骶骨加速度变异性测量的可靠性。19名跑步者在间隔7天的两次跑步机上完成了6次跑步试验。用imu获取步幅时间和骶部加速度信号。分别采用变异系数(CV)和去趋势波动分析(DFA)计算步幅时间变异性和复杂性。使用样本熵量化骶骨加速度规律,输入参数范围为m(向量长度)和r(相似阈值)。采用类内相关系数(ICC)、测量标准误差(SEM)和最小可检测变化来评估日间信度。步幅时间CV具有中等的相对信度(ICC = 0.672),但具有较大的绝对最小可检测变化= 0.525%;步幅时间DFA-α具有较差的相对信度(ICC = 0.457),但具有较大的最小可检测变化(≥0.208)。对于参数m和r的某些组合,样本熵在中外侧和由此产生的骶骨加速信号中显示出良好的相对可靠性,尽管同样具有较大的最小可检测变化。研究人员在解释临床环境中跑步步态变异性测量的变化时,应该认识到这些可靠性指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信