Adapting lateral stepping control to walk on winding paths.

IF 2.4 3区 医学 Q3 BIOPHYSICS
Journal of biomechanics Pub Date : 2025-02-01 Epub Date: 2025-01-07 DOI:10.1016/j.jbiomech.2025.112495
Anna C Render, Joseph P Cusumano, Jonathan B Dingwell
{"title":"Adapting lateral stepping control to walk on winding paths.","authors":"Anna C Render, Joseph P Cusumano, Jonathan B Dingwell","doi":"10.1016/j.jbiomech.2025.112495","DOIUrl":null,"url":null,"abstract":"<p><p>Most often, gait biomechanics is studied during straight-ahead walking. However, real-life walking imposes various lateral maneuvers people must navigate. Such maneuvers challenge people's lateral balance and can induce falls. Determining how people regulate their stepping movements during such complex walking tasks is therefore essential. Here, 24 adults (12F/12M; Age 25.8±3.5yrs) walked on wide or narrow virtual paths that were either straight, slowly-winding, or quickly-winding. From each trial, we computed time series of participants' step widths and their lateral body positions relative to their path. We applied our Goal Equivalent Manifold framework - an analysis of how task-level redundancy impacts motor regulation - to quantify how participants adjusted their step width and lateral position from step to step as they walked on these paths. On the narrower paths, participants walked with narrower steps and less lateral position and step width variability. They did so by correcting step-to-step deviations in lateral position more, while correcting step-to-step deviations in step width less. On the winding paths, participants took both narrower and more variable steps. Interestingly, on slowly-winding paths, participants corrected step-to-step deviations in step width more by correcting step-to-step deviations in lateral position less: i.e., they prioritized maintaining step width over position. Conversely, on quickly-winding paths, participants strongly corrected step-to-step deviations in both step width and lateral position: i.e., they prioritized maintaining both approximately equally, consistent with trying to maximize their maneuverability. These findings have important implications for persons who have elevated fall risk.</p>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"180 ","pages":"112495"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772107/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiomech.2025.112495","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Most often, gait biomechanics is studied during straight-ahead walking. However, real-life walking imposes various lateral maneuvers people must navigate. Such maneuvers challenge people's lateral balance and can induce falls. Determining how people regulate their stepping movements during such complex walking tasks is therefore essential. Here, 24 adults (12F/12M; Age 25.8±3.5yrs) walked on wide or narrow virtual paths that were either straight, slowly-winding, or quickly-winding. From each trial, we computed time series of participants' step widths and their lateral body positions relative to their path. We applied our Goal Equivalent Manifold framework - an analysis of how task-level redundancy impacts motor regulation - to quantify how participants adjusted their step width and lateral position from step to step as they walked on these paths. On the narrower paths, participants walked with narrower steps and less lateral position and step width variability. They did so by correcting step-to-step deviations in lateral position more, while correcting step-to-step deviations in step width less. On the winding paths, participants took both narrower and more variable steps. Interestingly, on slowly-winding paths, participants corrected step-to-step deviations in step width more by correcting step-to-step deviations in lateral position less: i.e., they prioritized maintaining step width over position. Conversely, on quickly-winding paths, participants strongly corrected step-to-step deviations in both step width and lateral position: i.e., they prioritized maintaining both approximately equally, consistent with trying to maximize their maneuverability. These findings have important implications for persons who have elevated fall risk.

适应在弯曲路径上行走的横向步进控制。
大多数情况下,步态生物力学研究在直线行走。然而,现实生活中的行走要求人们必须驾驭各种横向动作。这样的动作会挑战人的横向平衡,并可能导致跌倒。因此,确定人们在如此复杂的行走任务中如何调节他们的步伐是至关重要的。这里,24个成人(12F/12M;年龄(25.8±3.5岁)在宽或窄的虚拟路径上行走,这些路径要么笔直,要么缓慢蜿蜒,要么快速蜿蜒。从每个试验中,我们计算了参与者的步宽和他们相对于路径的侧体位置的时间序列。我们应用我们的目标等效流形框架(任务级冗余如何影响运动调节的分析)来量化参与者在这些路径上行走时如何一步一步地调整他们的步宽和横向位置。在较窄的路径上,参与者走的台阶较窄,横向位置和台阶宽度变化较小。他们通过更多地纠正横向位置的步进偏差,而纠正步宽的步进偏差较少来做到这一点。在蜿蜒的小路上,参与者走的是更窄、更多变的台阶。有趣的是,在缓慢弯曲的路径上,参与者通过更少地纠正横向位置上的一步到一步的偏差来纠正步宽上的一步到一步的偏差:即,他们优先考虑保持步宽而不是位置。相反,在快速弯曲的路径上,参与者强烈地纠正了步宽和横向位置的一步到一步的偏差:即,他们优先考虑保持两者大致相等,与尝试最大化他们的可操作性相一致。这些发现对有较高跌倒风险的人具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信