Bonnie M Hamilton, Liisa M Jantunen, Chelsea M Rochman
{"title":"Polyurethane microplastics and associated tris(chloropropyl)phosphate additives both affect development in larval fathead minnow Pimephales promelas.","authors":"Bonnie M Hamilton, Liisa M Jantunen, Chelsea M Rochman","doi":"10.1093/etojnl/vgae040","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics (< 5 mm) are a diverse class of contaminants ranging in morphology, polymer type, and chemical cocktail. Microplastic toxicity can be driven by one or a combination of these characteristics. Most studies, however, evaluate the physical effect of the most commercially available polymers. By disregarding other polymers with high consumption and/or production rates, and the chemical constituents of plastics, we fail to have a holistic understanding of the mechanisms of toxicity. Polyurethane is understudied in terms of effects testing yet considered one of the most hazardous polymers due to its chemical composition. Polyurethane is a high production polymer and is found in common consumer products ranging from packaging to spray foam insulation. To better understand the physico-chemical effects of polyurethane and a common additive in polyurethane products, we exposed larval fathead minnows for 28 days to polyurethane without chemical additives (i.e., plastic treatment), chemical leachate from polyurethane containing chemical additives (i.e., tris(chloropropyl)phosphate [TCPP]; i.e., chemical treatment) and polyurethane with chemical additives (i.e., plastic with chemical treatment) in a fully factorial experiment. We observed significant decreases in growth at 12 days posthatch (dph) in the plastic, chemical, and plastic with chemical treatments, suggesting a physical and chemical driver of toxicity. At 28 dph, we did not observe significant differences in growth, suggesting individuals can recover. We also observed concentrations of ΣTCPPs in fathead minnow exposed to the plastic with chemical treatment and the chemical only treatment, demonstrating TCPP uptake in exposed individuals. Combined, our data suggests the importance of both the physical and chemical components of microplastics when assessing effects, and thus emphasizing the need to evaluate the effects of microplastics in a multidimensional way.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology and Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/etojnl/vgae040","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (< 5 mm) are a diverse class of contaminants ranging in morphology, polymer type, and chemical cocktail. Microplastic toxicity can be driven by one or a combination of these characteristics. Most studies, however, evaluate the physical effect of the most commercially available polymers. By disregarding other polymers with high consumption and/or production rates, and the chemical constituents of plastics, we fail to have a holistic understanding of the mechanisms of toxicity. Polyurethane is understudied in terms of effects testing yet considered one of the most hazardous polymers due to its chemical composition. Polyurethane is a high production polymer and is found in common consumer products ranging from packaging to spray foam insulation. To better understand the physico-chemical effects of polyurethane and a common additive in polyurethane products, we exposed larval fathead minnows for 28 days to polyurethane without chemical additives (i.e., plastic treatment), chemical leachate from polyurethane containing chemical additives (i.e., tris(chloropropyl)phosphate [TCPP]; i.e., chemical treatment) and polyurethane with chemical additives (i.e., plastic with chemical treatment) in a fully factorial experiment. We observed significant decreases in growth at 12 days posthatch (dph) in the plastic, chemical, and plastic with chemical treatments, suggesting a physical and chemical driver of toxicity. At 28 dph, we did not observe significant differences in growth, suggesting individuals can recover. We also observed concentrations of ΣTCPPs in fathead minnow exposed to the plastic with chemical treatment and the chemical only treatment, demonstrating TCPP uptake in exposed individuals. Combined, our data suggests the importance of both the physical and chemical components of microplastics when assessing effects, and thus emphasizing the need to evaluate the effects of microplastics in a multidimensional way.
期刊介绍:
The Society of Environmental Toxicology and Chemistry (SETAC) publishes two journals: Environmental Toxicology and Chemistry (ET&C) and Integrated Environmental Assessment and Management (IEAM). Environmental Toxicology and Chemistry is dedicated to furthering scientific knowledge and disseminating information on environmental toxicology and chemistry, including the application of these sciences to risk assessment.[...]
Environmental Toxicology and Chemistry is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences. ET&C seeks to publish papers describing original experimental or theoretical work that significantly advances understanding in the area of environmental toxicology, environmental chemistry and hazard/risk assessment. Emphasis is given to papers that enhance capabilities for the prediction, measurement, and assessment of the fate and effects of chemicals in the environment, rather than simply providing additional data. The scientific impact of papers is judged in terms of the breadth and depth of the findings and the expected influence on existing or future scientific practice. Methodological papers must make clear not only how the work differs from existing practice, but the significance of these differences to the field. Site-based research or monitoring must have regional or global implications beyond the particular site, such as evaluating processes, mechanisms, or theory under a natural environmental setting.