Exploring the efficacy and constraints of platinum nanoparticles as adjuvant therapy in silicosis management.

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Delivery Pub Date : 2025-12-01 Epub Date: 2025-01-13 DOI:10.1080/10717544.2024.2445257
Ge Ban, Yuanjie Chen, Yingbing Liang, Xiaona Wang, Dan Ding, Rui Liu, Jingjing Jia, Ran Zhao, Chenxia Wang, Na Li
{"title":"Exploring the efficacy and constraints of platinum nanoparticles as adjuvant therapy in silicosis management.","authors":"Ge Ban, Yuanjie Chen, Yingbing Liang, Xiaona Wang, Dan Ding, Rui Liu, Jingjing Jia, Ran Zhao, Chenxia Wang, Na Li","doi":"10.1080/10717544.2024.2445257","DOIUrl":null,"url":null,"abstract":"<p><p>Silicosis represents a formidable occupational lung pathology precipitated by the pulmonary assimilation of respirable crystalline silica particulates. This condition engenders a cascade of cellular oxidative stress via the activation of bioavailable silica, culminating in the generation of reactive oxygen species (ROS). Such oxidative mechanisms lead to irrevocable pulmonary impairment. Contemporary scholarly examinations have underscored the substantial antioxidative efficacy of platinum nanoparticles (PtNPs), postulating their utility as an adjunct therapeutic modality in silicosis management. The physicochemical interaction between PtNPs and silica demonstrates a propensity for adsorption, thereby facilitating the amelioration and subsequent pulmonary clearance of silica aggregates. In addition to their detoxifying attributes, PtNPs exhibit pronounced anti-inflammatory and antioxidative activities, which can neutralize ROS and inhibit macrophage-mediated inflammatory processes. Such attributes are instrumental in attenuating inflammatory responses and forestalling subsequent lung tissue damage. This discourse delineates the interplay between ROS and PtNPs, the pathogenesis of silicosis and its progression to pulmonary fibrosis, and critically evaluates the potential adjunct role of PtNPs in the therapeutic landscape of silicosis, alongside a contemplation of the inherent limitations associated with PtNPs application in this context.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"32 1","pages":"2445257"},"PeriodicalIF":6.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730774/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2024.2445257","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Silicosis represents a formidable occupational lung pathology precipitated by the pulmonary assimilation of respirable crystalline silica particulates. This condition engenders a cascade of cellular oxidative stress via the activation of bioavailable silica, culminating in the generation of reactive oxygen species (ROS). Such oxidative mechanisms lead to irrevocable pulmonary impairment. Contemporary scholarly examinations have underscored the substantial antioxidative efficacy of platinum nanoparticles (PtNPs), postulating their utility as an adjunct therapeutic modality in silicosis management. The physicochemical interaction between PtNPs and silica demonstrates a propensity for adsorption, thereby facilitating the amelioration and subsequent pulmonary clearance of silica aggregates. In addition to their detoxifying attributes, PtNPs exhibit pronounced anti-inflammatory and antioxidative activities, which can neutralize ROS and inhibit macrophage-mediated inflammatory processes. Such attributes are instrumental in attenuating inflammatory responses and forestalling subsequent lung tissue damage. This discourse delineates the interplay between ROS and PtNPs, the pathogenesis of silicosis and its progression to pulmonary fibrosis, and critically evaluates the potential adjunct role of PtNPs in the therapeutic landscape of silicosis, alongside a contemplation of the inherent limitations associated with PtNPs application in this context.

探讨纳米铂辅助治疗矽肺的疗效和局限性。
矽肺病是一种严重的职业性肺部病变,由肺部吸收可吸入结晶二氧化硅微粒引起。这种病症通过激活可生物利用的二氧化硅,产生一连串的细胞氧化应激,最终生成活性氧(ROS)。这种氧化机制会导致不可逆转的肺损伤。当代学术研究强调了铂纳米粒子(PtNPs)的巨大抗氧化功效,并将其推测为治疗矽肺病的一种辅助疗法。铂纳米粒子与二氧化硅之间的物理化学相互作用显示出一种吸附倾向,从而促进二氧化硅聚集体的改善和随后的肺部清除。除了解毒特性外,铂氮氧化物还具有明显的抗炎和抗氧化活性,可中和 ROS 并抑制巨噬细胞介导的炎症过程。这些特性有助于减轻炎症反应和防止随后的肺组织损伤。本论文阐述了 ROS 与 PtNPs 之间的相互作用、矽肺病的发病机理及其向肺纤维化的进展,并批判性地评估了 PtNPs 在矽肺病治疗中的潜在辅助作用,同时探讨了 PtNPs 在这种情况下应用的固有局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信