Cross-subject mental workload recognition using bi-classifier domain adversarial learning.

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-01-09 DOI:10.1007/s11571-024-10215-9
Yueying Zhou, Pengpai Wang, Peiliang Gong, Peng Wan, Xuyun Wen, Daoqiang Zhang
{"title":"Cross-subject mental workload recognition using bi-classifier domain adversarial learning.","authors":"Yueying Zhou, Pengpai Wang, Peiliang Gong, Peng Wan, Xuyun Wen, Daoqiang Zhang","doi":"10.1007/s11571-024-10215-9","DOIUrl":null,"url":null,"abstract":"<p><p>To deploy Electroencephalogram (EEG) based Mental Workload Recognition (MWR) systems in the real world, it is crucial to develop general models that can be applied across subjects. Previous studies have utilized domain adaptation to mitigate inter-subject discrepancies in EEG data distributions. However, they have focused on reducing global domain discrepancy, while neglecting local workload-categorical domain divergence. This degrades the workload-discriminating ability of subject-invariant features. To deal with this problem, we propose a novel joint category-wise and domain-wise alignment Domain Adaptation (cdaDA) algorithm, using bi-classifier learning and domain discriminative adversarial learning. The bi-classifier learning approach is adopted to address the similarities and differences between categories, helping to align EEG data within the same mental workload categories. Additionally, the domain discriminative adversarial learning technique is adopted to consider global domain information by minimizing global domain discrepancy. By integrating both local category information and global domain information, the cdaDA model performs a coarse-to-fine alignment and achieves promising cross-subject MWR results.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"16"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718037/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10215-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To deploy Electroencephalogram (EEG) based Mental Workload Recognition (MWR) systems in the real world, it is crucial to develop general models that can be applied across subjects. Previous studies have utilized domain adaptation to mitigate inter-subject discrepancies in EEG data distributions. However, they have focused on reducing global domain discrepancy, while neglecting local workload-categorical domain divergence. This degrades the workload-discriminating ability of subject-invariant features. To deal with this problem, we propose a novel joint category-wise and domain-wise alignment Domain Adaptation (cdaDA) algorithm, using bi-classifier learning and domain discriminative adversarial learning. The bi-classifier learning approach is adopted to address the similarities and differences between categories, helping to align EEG data within the same mental workload categories. Additionally, the domain discriminative adversarial learning technique is adopted to consider global domain information by minimizing global domain discrepancy. By integrating both local category information and global domain information, the cdaDA model performs a coarse-to-fine alignment and achieves promising cross-subject MWR results.

基于双分类器领域对抗学习的跨学科心理工作量识别。
为了在现实世界中部署基于脑电图(EEG)的精神负荷识别(MWR)系统,开发可跨学科应用的通用模型至关重要。以往的研究利用领域自适应来缓解脑电数据分布的主体间差异。然而,它们关注的是减少全局域差异,而忽略了局部工作负载-分类域差异。这降低了主题不变特征的工作负载区分能力。为了解决这一问题,我们提出了一种新的联合类别智能和领域智能对齐领域自适应(cdaDA)算法,该算法使用双分类器学习和领域判别对抗学习。采用双分类器学习方法来解决类别之间的相似性和差异性,有助于在相同的脑力工作类别中对齐脑电图数据。此外,采用域判别对抗学习技术,考虑全局域信息,使全局域差异最小化。通过整合局部类别信息和全局领域信息,cdaDA模型进行了从粗到精的对齐,并获得了令人满意的跨学科MWR结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信