{"title":"Cross-subject mental workload recognition using bi-classifier domain adversarial learning.","authors":"Yueying Zhou, Pengpai Wang, Peiliang Gong, Peng Wan, Xuyun Wen, Daoqiang Zhang","doi":"10.1007/s11571-024-10215-9","DOIUrl":null,"url":null,"abstract":"<p><p>To deploy Electroencephalogram (EEG) based Mental Workload Recognition (MWR) systems in the real world, it is crucial to develop general models that can be applied across subjects. Previous studies have utilized domain adaptation to mitigate inter-subject discrepancies in EEG data distributions. However, they have focused on reducing global domain discrepancy, while neglecting local workload-categorical domain divergence. This degrades the workload-discriminating ability of subject-invariant features. To deal with this problem, we propose a novel joint category-wise and domain-wise alignment Domain Adaptation (cdaDA) algorithm, using bi-classifier learning and domain discriminative adversarial learning. The bi-classifier learning approach is adopted to address the similarities and differences between categories, helping to align EEG data within the same mental workload categories. Additionally, the domain discriminative adversarial learning technique is adopted to consider global domain information by minimizing global domain discrepancy. By integrating both local category information and global domain information, the cdaDA model performs a coarse-to-fine alignment and achieves promising cross-subject MWR results.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"16"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718037/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10215-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
To deploy Electroencephalogram (EEG) based Mental Workload Recognition (MWR) systems in the real world, it is crucial to develop general models that can be applied across subjects. Previous studies have utilized domain adaptation to mitigate inter-subject discrepancies in EEG data distributions. However, they have focused on reducing global domain discrepancy, while neglecting local workload-categorical domain divergence. This degrades the workload-discriminating ability of subject-invariant features. To deal with this problem, we propose a novel joint category-wise and domain-wise alignment Domain Adaptation (cdaDA) algorithm, using bi-classifier learning and domain discriminative adversarial learning. The bi-classifier learning approach is adopted to address the similarities and differences between categories, helping to align EEG data within the same mental workload categories. Additionally, the domain discriminative adversarial learning technique is adopted to consider global domain information by minimizing global domain discrepancy. By integrating both local category information and global domain information, the cdaDA model performs a coarse-to-fine alignment and achieves promising cross-subject MWR results.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.