Lei Chen , Run Liu , Xin He , Jiacheng Fang , Liyin Zhou , Zhongshi Qi , Mingzhu Tao , Haicheng Yuan , Yu Zhou
{"title":"Synergistically effects of n-3 PUFA and B vitamins prevent diabetic cognitive dysfunction through promoting TET2-mediated active DNA demethylation","authors":"Lei Chen , Run Liu , Xin He , Jiacheng Fang , Liyin Zhou , Zhongshi Qi , Mingzhu Tao , Haicheng Yuan , Yu Zhou","doi":"10.1016/j.clnu.2025.01.002","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic cognitive dysfunction (DCD) refers to the cognitive impairment observed in individuals with diabetes. Epidemiological studies have suggested that supplementation with n-3 polyunsaturated fatty acid (PUFA) or B vitamins may prevent the development of diabetic complications. Post hoc studies indicate a potential synergistic effect of n-3 PUFA and B vitamins in preventing cognitive impairment. However, the precise effect and underlying mechanism of this combination on DCD remain unclear. In case–control study, we compared fatty acid composition of erythrocyte membrane and serum homocysteine levels between diabetic individuals with and without DCD. We found that insufficient levels of n-3 PUFA, along with elevated serum homocysteine, significantly increase the risk of developing DCD. Treatment with a combination of fish oil, folate, and vitamin B<sub>12</sub> improved cognitive impairment and aberrant neuronal morphology in streptozotocin-induced DCD mice. Folic acid and vitamin B<sub>12</sub> enhanced the efficiency of exogenous docosahexaenoic acid (DHA) transportation to the brain by preventing the accumulation of homocysteine and S-adenosylhomocysteine, thereby inhibiting neuronal apoptosis in diabetic brains. Furthermore, folic acid and vitamin B<sub>12</sub> supplementation can provide sufficient 5-methylcytosine for diabetic brains by promoting DNA methylation, while increased DHA levels maintain TET-mediated active DNA demethylation in diabetic brains through enhancing TET2 function. Overall, our study provides novel insights into molecular mechanisms underlying the synergistic preventive effects of the combined supplementation with fish oil, folic acid and vitamin B<sub>12</sub> on DCD, suggests that combining n-3 PUFA and B vitamins could be a promising strategy for preventing DCD among individuals with diabetes.</div></div>","PeriodicalId":10517,"journal":{"name":"Clinical nutrition","volume":"45 ","pages":"Pages 111-123"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical nutrition","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0261561425000032","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic cognitive dysfunction (DCD) refers to the cognitive impairment observed in individuals with diabetes. Epidemiological studies have suggested that supplementation with n-3 polyunsaturated fatty acid (PUFA) or B vitamins may prevent the development of diabetic complications. Post hoc studies indicate a potential synergistic effect of n-3 PUFA and B vitamins in preventing cognitive impairment. However, the precise effect and underlying mechanism of this combination on DCD remain unclear. In case–control study, we compared fatty acid composition of erythrocyte membrane and serum homocysteine levels between diabetic individuals with and without DCD. We found that insufficient levels of n-3 PUFA, along with elevated serum homocysteine, significantly increase the risk of developing DCD. Treatment with a combination of fish oil, folate, and vitamin B12 improved cognitive impairment and aberrant neuronal morphology in streptozotocin-induced DCD mice. Folic acid and vitamin B12 enhanced the efficiency of exogenous docosahexaenoic acid (DHA) transportation to the brain by preventing the accumulation of homocysteine and S-adenosylhomocysteine, thereby inhibiting neuronal apoptosis in diabetic brains. Furthermore, folic acid and vitamin B12 supplementation can provide sufficient 5-methylcytosine for diabetic brains by promoting DNA methylation, while increased DHA levels maintain TET-mediated active DNA demethylation in diabetic brains through enhancing TET2 function. Overall, our study provides novel insights into molecular mechanisms underlying the synergistic preventive effects of the combined supplementation with fish oil, folic acid and vitamin B12 on DCD, suggests that combining n-3 PUFA and B vitamins could be a promising strategy for preventing DCD among individuals with diabetes.
期刊介绍:
Clinical Nutrition, the official journal of ESPEN, The European Society for Clinical Nutrition and Metabolism, is an international journal providing essential scientific information on nutritional and metabolic care and the relationship between nutrition and disease both in the setting of basic science and clinical practice. Published bi-monthly, each issue combines original articles and reviews providing an invaluable reference for any specialist concerned with these fields.