Comprehensive analysis pinpoints CCNA2 as a prognostic and immunological biomarker in non-small cell lung cancer.

IF 2.6 3区 医学 Q2 RESPIRATORY SYSTEM
Liming Zhang, Shaoqiang Wang, Lina Wang
{"title":"Comprehensive analysis pinpoints CCNA2 as a prognostic and immunological biomarker in non-small cell lung cancer.","authors":"Liming Zhang, Shaoqiang Wang, Lina Wang","doi":"10.1186/s12890-025-03490-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lung cancer is a leading cause of morbidity and mortality globally. Despite advances in targeted and immunotherapies, overall survival (OS) rates remain suboptimal. Cyclin-A2 (CCNA2), known for its upregulation in various tumors and role in tumorigenesis, has an undefined function in non-small cell lung cancer (NSCLC).</p><p><strong>Methods: </strong>We analyzed three microarray datasets from the Gene Expression Omnibus (GEO) repository to identify differentially expressed genes. Using STRING, we constructed a protein-protein interaction (PPI) network to pinpoint hub genes. The expression and prognostic relevance of CCNA2 were validated using GEPIA and the Kaplan-Meier plotter. Clinicopathological correlations were assessed via the Human Protein Atlas (HPA) and UALCAN databases. qRT-PCR and immunohistochemistry (IHC) were performed to validate CCNA2 mRNA and protein levels. Loss-of-function assays in lung cancer cell lines evaluated the biological role of CCNA2. Immune infiltration and single-cell sequencing were also explored.</p><p><strong>Results: </strong>Analysis of GSE18842, GSE101929, and GSE116959 datasets identified 321 upregulated and 623 downregulated genes in NSCLC. CCNA2 was confirmed to be highly expressed in NSCLC through qRT-PCR and IHC, with overexpression correlating with advanced pathological stages and lymph node metastasis. The area under the curve (AUC) of CCNA2 indicating high diagnostic accuracy. Immune infiltration and single-cell sequencing revealed that CCNA2 expression was significantly associated with immune cell infiltration, particularly in Tprolif cells.</p><p><strong>Conclusion: </strong>CCNA2 is upregulated in NSCLC and shows significant correlation with clinicopathological characteristics. Our findings suggest that CCNA2 may serve as a promising biomarker for both the prognosis and diagnosis of NSCLC.</p>","PeriodicalId":9148,"journal":{"name":"BMC Pulmonary Medicine","volume":"25 1","pages":"14"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725219/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pulmonary Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12890-025-03490-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Lung cancer is a leading cause of morbidity and mortality globally. Despite advances in targeted and immunotherapies, overall survival (OS) rates remain suboptimal. Cyclin-A2 (CCNA2), known for its upregulation in various tumors and role in tumorigenesis, has an undefined function in non-small cell lung cancer (NSCLC).

Methods: We analyzed three microarray datasets from the Gene Expression Omnibus (GEO) repository to identify differentially expressed genes. Using STRING, we constructed a protein-protein interaction (PPI) network to pinpoint hub genes. The expression and prognostic relevance of CCNA2 were validated using GEPIA and the Kaplan-Meier plotter. Clinicopathological correlations were assessed via the Human Protein Atlas (HPA) and UALCAN databases. qRT-PCR and immunohistochemistry (IHC) were performed to validate CCNA2 mRNA and protein levels. Loss-of-function assays in lung cancer cell lines evaluated the biological role of CCNA2. Immune infiltration and single-cell sequencing were also explored.

Results: Analysis of GSE18842, GSE101929, and GSE116959 datasets identified 321 upregulated and 623 downregulated genes in NSCLC. CCNA2 was confirmed to be highly expressed in NSCLC through qRT-PCR and IHC, with overexpression correlating with advanced pathological stages and lymph node metastasis. The area under the curve (AUC) of CCNA2 indicating high diagnostic accuracy. Immune infiltration and single-cell sequencing revealed that CCNA2 expression was significantly associated with immune cell infiltration, particularly in Tprolif cells.

Conclusion: CCNA2 is upregulated in NSCLC and shows significant correlation with clinicopathological characteristics. Our findings suggest that CCNA2 may serve as a promising biomarker for both the prognosis and diagnosis of NSCLC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Pulmonary Medicine
BMC Pulmonary Medicine RESPIRATORY SYSTEM-
CiteScore
4.40
自引率
3.20%
发文量
423
审稿时长
6-12 weeks
期刊介绍: BMC Pulmonary Medicine is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of pulmonary and associated disorders, as well as related molecular genetics, pathophysiology, and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信