{"title":"Aging and voluntary exercise’s effects on Aβ1-42 levels, endoplasmic reticulum stress factors, and apoptosis in the hippocampus of old male rats","authors":"Leila Derafshpour , Mona Niazi , Bagher Pourheydar , Shiva Roshan-Milani , Morteza Asghariehahari , Leila Chodari","doi":"10.1016/j.brainres.2025.149447","DOIUrl":null,"url":null,"abstract":"<div><div>Within the aging cortex, amyloid beta peptide (Aβ) is a crucial element of the senile plaques, a hallmark feature often observed in cases of Alzheimer’s disease (AD). The UPR (unfolded protein response), a cellular mechanism for protein folding, is switched on by Aβ accumulation. Endoplasmic reticulum (ER) stress has been identified as playing a role in aging and the development of neurodegenerative diseases. The exact molecular pathways leading to perishing of cells from Aβ-induced ER stress, as well as the impact of voluntary exercise on these mechanisms, are still subjects awaiting a definitive answer yet. In the current study, 18 male Wistar rats were included: 6 young rats (3 months old; 200–250 g) in the Young Control group, and 12 old rats (18 months old; 400–430 g) randomly allocated to the Old Control and Old Exercise groups. The rat cages had running wheels for them to voluntarily run on for 8 weeks. This was followed by Western blotting, immunohistochemical staining, biochemical as well as morphological analyses. Voluntary exercise reduced Aβ1-42 deposition (P < 0.001) and inhibited the activation of caspase-8 (P < 0.001) and caspase-12 (P < 0.01), and on top of that down-regulated the expression of ATF6 (P < 0.001), CHOP (P < 0.01), and p-PERK (P < 0.05) proteins in the hippocampus of old male rats. Exercise amplified the population of Bcl-2-expressing cells and decreased the population of Bax-expressing cells in the hippocampus of the Old Exercise group (P < 0.001). Voluntary exercise inhibited the apoptotic pathways and suppressed the activation of UPR signaling pathways. Hence, voluntary exercise may be a therapeutic strategy and a promising approach to prevent AD through modulation of Aβ-induced ER stress.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1850 ","pages":"Article 149447"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899325000058","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Within the aging cortex, amyloid beta peptide (Aβ) is a crucial element of the senile plaques, a hallmark feature often observed in cases of Alzheimer’s disease (AD). The UPR (unfolded protein response), a cellular mechanism for protein folding, is switched on by Aβ accumulation. Endoplasmic reticulum (ER) stress has been identified as playing a role in aging and the development of neurodegenerative diseases. The exact molecular pathways leading to perishing of cells from Aβ-induced ER stress, as well as the impact of voluntary exercise on these mechanisms, are still subjects awaiting a definitive answer yet. In the current study, 18 male Wistar rats were included: 6 young rats (3 months old; 200–250 g) in the Young Control group, and 12 old rats (18 months old; 400–430 g) randomly allocated to the Old Control and Old Exercise groups. The rat cages had running wheels for them to voluntarily run on for 8 weeks. This was followed by Western blotting, immunohistochemical staining, biochemical as well as morphological analyses. Voluntary exercise reduced Aβ1-42 deposition (P < 0.001) and inhibited the activation of caspase-8 (P < 0.001) and caspase-12 (P < 0.01), and on top of that down-regulated the expression of ATF6 (P < 0.001), CHOP (P < 0.01), and p-PERK (P < 0.05) proteins in the hippocampus of old male rats. Exercise amplified the population of Bcl-2-expressing cells and decreased the population of Bax-expressing cells in the hippocampus of the Old Exercise group (P < 0.001). Voluntary exercise inhibited the apoptotic pathways and suppressed the activation of UPR signaling pathways. Hence, voluntary exercise may be a therapeutic strategy and a promising approach to prevent AD through modulation of Aβ-induced ER stress.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.