Yulan Lu , Chunhong Liu , Xiaoxia Pang , Xinghong Chen , Chunfang Wang , Huatuo Huang
{"title":"Bioinformatic identification of signature miRNAs associated with fetoplacental vascular dysfunction in gestational diabetes mellitus","authors":"Yulan Lu , Chunhong Liu , Xiaoxia Pang , Xinghong Chen , Chunfang Wang , Huatuo Huang","doi":"10.1016/j.bbrep.2024.101888","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Intrauterine exposure to gestational diabetes mellitus (GDM) poses significant risks to fetal development and future metabolic health. Despite its clinical importance, the role of microRNAs (miRNAs) in fetoplacental vascular endothelial cell (VEC) programming in the context of GDM remains elusive. This study aims to identify signature miRNA genes involved in this process using bioinformatics analysis via multiple algorithms.</div></div><div><h3>Methods</h3><div>The dataset used in this study was acquired from Gene Expression Omnibus (GEO). Firstly, differentially expressed miRNA genes (DEMGs) were evaluated using limma package. Thereafter, an enrichment analysis of DEMGs was performed. Then, the least absolute shrinkage and selection operator (LASSO) and support vector machine (SVM) were used as the other algorithms for screening candidate signature miRNA genes. Genes from the intersection of limma, LASSO, and SVM genes were used as the final signature miRNA genes. The receiver operator characteristic curve (ROC), the nomogram diagram, gene set enrichment analysis (GSEA), and signature miRNAs-target genes interaction network were implemented further to explore the features and functions of signature genes.</div></div><div><h3>Results</h3><div>A total of 32 DEMGs, with 21 upregulated and 11 downregulated miRNA genes, were obtained from limma analysis. LASSO and SVM analyses identified 15 and 12 candidate signature miRNA genes, respectively. After the intersection of genes from limma, LASSO, and SVM analyses, MIR34A and MIR186 were found as the final signature genes related to fetoplacental VEC programming. MIR34A and MIR186 were highly expressed and were associated with an increased risk of fetoplacental VEC programming in GDM mothers. The area under the curve (AUC) of ROC for MIR34A and MIR186 were 0.960 and 0.935, respectively. GSEA analysis revealed that these signature genes positively participate in cellular processes related to VEC migration, cell differentiation, angiogenesis, programmed cell death, and inflammatory response. Finally, miRNAs-target genes interaction network analysis provides the interaction of signature miRNAs and their critical target genes, which may help further studies for miR-34a and miR-186 in GDM.</div></div><div><h3>Conclusions</h3><div>MIR34A and MIR186 are novel signature miRNA genes related to fetoplacental VEC programming that may represent critical genes associated with placental function and fetal programming under GDM conditions.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"41 ","pages":"Article 101888"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720096/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580824002528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Intrauterine exposure to gestational diabetes mellitus (GDM) poses significant risks to fetal development and future metabolic health. Despite its clinical importance, the role of microRNAs (miRNAs) in fetoplacental vascular endothelial cell (VEC) programming in the context of GDM remains elusive. This study aims to identify signature miRNA genes involved in this process using bioinformatics analysis via multiple algorithms.
Methods
The dataset used in this study was acquired from Gene Expression Omnibus (GEO). Firstly, differentially expressed miRNA genes (DEMGs) were evaluated using limma package. Thereafter, an enrichment analysis of DEMGs was performed. Then, the least absolute shrinkage and selection operator (LASSO) and support vector machine (SVM) were used as the other algorithms for screening candidate signature miRNA genes. Genes from the intersection of limma, LASSO, and SVM genes were used as the final signature miRNA genes. The receiver operator characteristic curve (ROC), the nomogram diagram, gene set enrichment analysis (GSEA), and signature miRNAs-target genes interaction network were implemented further to explore the features and functions of signature genes.
Results
A total of 32 DEMGs, with 21 upregulated and 11 downregulated miRNA genes, were obtained from limma analysis. LASSO and SVM analyses identified 15 and 12 candidate signature miRNA genes, respectively. After the intersection of genes from limma, LASSO, and SVM analyses, MIR34A and MIR186 were found as the final signature genes related to fetoplacental VEC programming. MIR34A and MIR186 were highly expressed and were associated with an increased risk of fetoplacental VEC programming in GDM mothers. The area under the curve (AUC) of ROC for MIR34A and MIR186 were 0.960 and 0.935, respectively. GSEA analysis revealed that these signature genes positively participate in cellular processes related to VEC migration, cell differentiation, angiogenesis, programmed cell death, and inflammatory response. Finally, miRNAs-target genes interaction network analysis provides the interaction of signature miRNAs and their critical target genes, which may help further studies for miR-34a and miR-186 in GDM.
Conclusions
MIR34A and MIR186 are novel signature miRNA genes related to fetoplacental VEC programming that may represent critical genes associated with placental function and fetal programming under GDM conditions.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.