Gabriel Atampugbire, Eureka Emefa Ahadjie Adomako, Osbourne Quaye
{"title":"<i>In Vitro</i> Antiviral Assays: A Review of Laboratory Methods.","authors":"Gabriel Atampugbire, Eureka Emefa Ahadjie Adomako, Osbourne Quaye","doi":"10.1089/adt.2024.075","DOIUrl":null,"url":null,"abstract":"<p><p>\n <i>Viral diseases remain a significant challenge for global health with rising fatalities each year. In vitro assays are crucial techniques that have been utilized by researchers in the quest to develop antiviral therapies. These assays mimic the internal conditions of a living system and make it possible to study how antiviral compounds interact with such systems in a laboratory setting. Thus, the importance of in vitro assays cannot be overemphasized, as they provide an accurate means for assessing the efficacy of potential antiviral compounds. This review offers an overview of in vitro antiviral assays, the different types of cell lines used, and emerging techniques and applications that have been developed in recent times. The current review also assesses challenges that are encountered in antiviral drug research, as well as emerging technologies like microfluidics and three-dimensional cell cultures. The integration of computational models and multiparametric assays into antiviral research was noted to significantly improve antiviral drug development process.</i>\n </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2024.075","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Viral diseases remain a significant challenge for global health with rising fatalities each year. In vitro assays are crucial techniques that have been utilized by researchers in the quest to develop antiviral therapies. These assays mimic the internal conditions of a living system and make it possible to study how antiviral compounds interact with such systems in a laboratory setting. Thus, the importance of in vitro assays cannot be overemphasized, as they provide an accurate means for assessing the efficacy of potential antiviral compounds. This review offers an overview of in vitro antiviral assays, the different types of cell lines used, and emerging techniques and applications that have been developed in recent times. The current review also assesses challenges that are encountered in antiviral drug research, as well as emerging technologies like microfluidics and three-dimensional cell cultures. The integration of computational models and multiparametric assays into antiviral research was noted to significantly improve antiviral drug development process.
期刊介绍:
ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application.
ASSAY and Drug Development Technologies coverage includes:
-Assay design, target development, and high-throughput technologies-
Hit to Lead optimization and medicinal chemistry through preclinical candidate selection-
Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis-
Approaches to assays configured for gene families, inherited, and infectious diseases-
Assays and strategies for adapting model organisms to drug discovery-
The use of stem cells as models of disease-
Translation of phenotypic outputs to target identification-
Exploration and mechanistic studies of the technical basis for assay and screening artifacts