{"title":"Two-component system UhpAB facilitates the pathogenicity of avian pathogenic <i>Escherichia coli</i> through biofilm formation and stress responses.","authors":"Lumin Yu, Hui Wang, Xinglin Zhang, Ting Xue","doi":"10.1080/03079457.2024.2442704","DOIUrl":null,"url":null,"abstract":"<p><p>Avian pathogenic <i>Escherichia coli</i> (APEC) is an important zoonotic pathogen that infects avian species by colonizing the gastrointestinal, respiratory, or reproductive tracts, leading to significant economic losses to the poultry industry worldwide and threatening food security and human health. APEC has evolved the two-component signal transduction system (TCS) to adapt and respond to extracellular environmental stresses, which are produced when the host is invaded by APEC. Here, we focus on the effect of the UhpAB TCS on the pathogenicity of APEC. The results in this study showed that the UhpAB TCS contributed to the pathogenicity of APEC in a chicken infection model. The electrophoretic mobility shift assays (EMSA) confirmed that UhpAB specifically bound to the promoters of <i>fepG</i>, <i>ldrD</i>, <i>ycgV</i>, and <i>ydeI</i>, and activated their expression, measured using real-time reverse transcription PCR (real-time RT-PCR). Furthermore, the UhpAB TCS could promote biofilm formation by activating the expression of biofilm master transcriptional regulator encoding gene <i>csgD</i> and enhance stress tolerance by activating the expression of stress protein encoding genes <i>uspA</i> and <i>bhsA</i>, thereby assisting APEC to evade host immune responses and inflammatory responses, and increasing the pathogenicity of APEC. These findings deepen our understanding of the pathogenic mechanism in APEC and offer new perspectives for further studies on the prevention and control of APEC infection.<b>RESEARCH HIGHLIGHTS</b>UhpAB increases the pathogenicity of APEC.UhpAB activates the expression of virulence genes <i>fepG</i>, <i>ldrD</i>, <i>ycgV</i>, and <i>ydeI</i>.UhpAB promotes biofilm formation and enhances stress tolerance.UhpAB contributes to APEC evading attack by the host immune system.</p>","PeriodicalId":8788,"journal":{"name":"Avian Pathology","volume":" ","pages":"359-370"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avian Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03079457.2024.2442704","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Avian pathogenic Escherichia coli (APEC) is an important zoonotic pathogen that infects avian species by colonizing the gastrointestinal, respiratory, or reproductive tracts, leading to significant economic losses to the poultry industry worldwide and threatening food security and human health. APEC has evolved the two-component signal transduction system (TCS) to adapt and respond to extracellular environmental stresses, which are produced when the host is invaded by APEC. Here, we focus on the effect of the UhpAB TCS on the pathogenicity of APEC. The results in this study showed that the UhpAB TCS contributed to the pathogenicity of APEC in a chicken infection model. The electrophoretic mobility shift assays (EMSA) confirmed that UhpAB specifically bound to the promoters of fepG, ldrD, ycgV, and ydeI, and activated their expression, measured using real-time reverse transcription PCR (real-time RT-PCR). Furthermore, the UhpAB TCS could promote biofilm formation by activating the expression of biofilm master transcriptional regulator encoding gene csgD and enhance stress tolerance by activating the expression of stress protein encoding genes uspA and bhsA, thereby assisting APEC to evade host immune responses and inflammatory responses, and increasing the pathogenicity of APEC. These findings deepen our understanding of the pathogenic mechanism in APEC and offer new perspectives for further studies on the prevention and control of APEC infection.RESEARCH HIGHLIGHTSUhpAB increases the pathogenicity of APEC.UhpAB activates the expression of virulence genes fepG, ldrD, ycgV, and ydeI.UhpAB promotes biofilm formation and enhances stress tolerance.UhpAB contributes to APEC evading attack by the host immune system.
期刊介绍:
Avian Pathology is the official journal of the World Veterinary Poultry Association and, since its first publication in 1972, has been a leading international journal for poultry disease scientists. It publishes material relevant to the entire field of infectious and non-infectious diseases of poultry and other birds. Accepted manuscripts will contribute novel data of interest to an international readership and will add significantly to knowledge and understanding of diseases, old or new. Subject areas include pathology, diagnosis, detection and characterisation of pathogens, infections of possible zoonotic importance, epidemiology, innate and immune responses, vaccines, gene sequences, genetics in relation to disease and physiological and biochemical changes in response to disease. First and subsequent reports of well-recognized diseases within a country are not acceptable unless they also include substantial new information about the disease or pathogen. Manuscripts on wild or pet birds should describe disease or pathogens in a significant number of birds, recognizing/suggesting serious potential impact on that species or that the disease or pathogen is of demonstrable relevance to poultry. Manuscripts on food-borne microorganisms acquired during or after processing, and those that catalogue the occurrence or properties of microorganisms, are unlikely to be considered for publication in the absence of data linking them to avian disease.