Bioaccumulation of novel brominated flame retardants in a marine food web: A comprehensive analysis of occurrence, trophic transfer, and interfering factors.
Wenchao Yang, Zhaowei Wang, Yan Jiang, Song Cui, Meng Yang, Changhong Li, Yi-Fan Li, Hongliang Jia
{"title":"Bioaccumulation of novel brominated flame retardants in a marine food web: A comprehensive analysis of occurrence, trophic transfer, and interfering factors.","authors":"Wenchao Yang, Zhaowei Wang, Yan Jiang, Song Cui, Meng Yang, Changhong Li, Yi-Fan Li, Hongliang Jia","doi":"10.1016/j.scitotenv.2025.178428","DOIUrl":null,"url":null,"abstract":"<p><p>Although the concept of bioaccumulation for novel brominated flame retardants (NBFRs) is clear, the process and interfering factors of bioaccumulation are still not fully understood. The present study comprehensively evaluated the occurrence, transfer and interfering factors of NBFRs in a marine food web to provide new thought and perspective for the bioaccumulation of these compounds. The occurrence of 17 NBFRs were determined from 8 water, 8 sediment and 303 organism samples collected from Dalian Bay, China. The trophic magnification factor (TMF), the bioaccumulation factor (BAF) and the biota sediment accumulation factor (BSAF) were calculated in a plankton-mollusk-crustacean-fish based food webs. Results showed that among the 17 target NBFRs, 11 compounds appeared the significant trophic magnification and 2 compounds of decabromodiphenylethane (DBDPE) and octabromotrimethylphenylindane (OBIND) presented the significant trophic dilution. The significant positive correlation was found between the value of BAFs and the trophic level for 15 NBFRs (except DBDPE and OBIND), indicating that the species with high BAFs values were all at high trophic levels. The stable and rapid metabolic rates of DBDPE and OBIND constitute the main reason why they hardly accumulate in high trophic level organisms. The BSAFs of NBFRs in swimming organisms were much higher than that in mollusks and crustaceans, indicating that a large part of NBFRs accumulated from food webs. The significant positive correlation between TMF and BAF was observed in high trophic level organisms, which demonstrates the important role of high trophic level organisms in evaluating the bioaccumulation effect of NBFRs.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"962 ","pages":"178428"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2025.178428","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Although the concept of bioaccumulation for novel brominated flame retardants (NBFRs) is clear, the process and interfering factors of bioaccumulation are still not fully understood. The present study comprehensively evaluated the occurrence, transfer and interfering factors of NBFRs in a marine food web to provide new thought and perspective for the bioaccumulation of these compounds. The occurrence of 17 NBFRs were determined from 8 water, 8 sediment and 303 organism samples collected from Dalian Bay, China. The trophic magnification factor (TMF), the bioaccumulation factor (BAF) and the biota sediment accumulation factor (BSAF) were calculated in a plankton-mollusk-crustacean-fish based food webs. Results showed that among the 17 target NBFRs, 11 compounds appeared the significant trophic magnification and 2 compounds of decabromodiphenylethane (DBDPE) and octabromotrimethylphenylindane (OBIND) presented the significant trophic dilution. The significant positive correlation was found between the value of BAFs and the trophic level for 15 NBFRs (except DBDPE and OBIND), indicating that the species with high BAFs values were all at high trophic levels. The stable and rapid metabolic rates of DBDPE and OBIND constitute the main reason why they hardly accumulate in high trophic level organisms. The BSAFs of NBFRs in swimming organisms were much higher than that in mollusks and crustaceans, indicating that a large part of NBFRs accumulated from food webs. The significant positive correlation between TMF and BAF was observed in high trophic level organisms, which demonstrates the important role of high trophic level organisms in evaluating the bioaccumulation effect of NBFRs.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.