Fluorescent distinguishing flavonoid glycosides against aglycones based on the selective recognization of boric acid-functional Eu(III)-organic framework.
{"title":"Fluorescent distinguishing flavonoid glycosides against aglycones based on the selective recognization of boric acid-functional Eu(III)-organic framework.","authors":"Shuyun Zhu, Kunming Sun, Shuyi Liu, Qian Wang, Jiatong Fan, Xian-En Zhao, Guobao Xu","doi":"10.1016/j.talanta.2025.127559","DOIUrl":null,"url":null,"abstract":"<p><p>Flavonoid glycosides are formed by dehydration condensation of aglycones and sugar molecules. Therefore, discrimination of flavonoid glycosides from their corresponding aglycones is a challenging task because they contain the same aglycone part in their molecular structures. Herein, boric acid-functional Eu(III)-organic framework (BA-Eu-MOF) was applied to discriminate flavonoid glycosides including baicalin (Bai), wogonoside (Wog), rutin (Rut), puerarin (Pue), quercitrin (Que) and astragalin (Ast) from their corresponding aglycones for the first time. Besides as organic ligand to sensitize the luminescence of Eu<sup>3+</sup> through \"antenna\" effect, 5-boronobenzene-1,3 dicarboxylic acid provided recognition site for flavonoid glycosides. Infrared, fluorescence, UV-vis, and mass spectra were used to investigate the recognition reaction between BA-Eu-MOF and flavonoid glycosides. The data indicated that the cis-diols of flavonoid glycosides from sugars covalently bonded to boric acid group to form cyclic boronic esters, which quenched the fluorescence of BA-Eu-MOF at 620 nm through decreasing the intersystem efficiency, inner filter effect and photoelectron transfer. In contrast, aglycones could not alter the fluorescence of BA-Eu-MOF because of no covalent bond between them. This probe exhibited high sensitivity towards flavonoid glycosides with the low detection limits of 3.3 nM, 3.5 nM, 33 nM, 56 nM, 5.1 nM and 5.5 nM for Bai, Que, Wog, Ast, Pue and Rut, respectively. The unique recognition ability of boric acid group enables selective and sensitive detection of flavonoid glycosides without the interference of their corresponding aglycones.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127559"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.127559","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flavonoid glycosides are formed by dehydration condensation of aglycones and sugar molecules. Therefore, discrimination of flavonoid glycosides from their corresponding aglycones is a challenging task because they contain the same aglycone part in their molecular structures. Herein, boric acid-functional Eu(III)-organic framework (BA-Eu-MOF) was applied to discriminate flavonoid glycosides including baicalin (Bai), wogonoside (Wog), rutin (Rut), puerarin (Pue), quercitrin (Que) and astragalin (Ast) from their corresponding aglycones for the first time. Besides as organic ligand to sensitize the luminescence of Eu3+ through "antenna" effect, 5-boronobenzene-1,3 dicarboxylic acid provided recognition site for flavonoid glycosides. Infrared, fluorescence, UV-vis, and mass spectra were used to investigate the recognition reaction between BA-Eu-MOF and flavonoid glycosides. The data indicated that the cis-diols of flavonoid glycosides from sugars covalently bonded to boric acid group to form cyclic boronic esters, which quenched the fluorescence of BA-Eu-MOF at 620 nm through decreasing the intersystem efficiency, inner filter effect and photoelectron transfer. In contrast, aglycones could not alter the fluorescence of BA-Eu-MOF because of no covalent bond between them. This probe exhibited high sensitivity towards flavonoid glycosides with the low detection limits of 3.3 nM, 3.5 nM, 33 nM, 56 nM, 5.1 nM and 5.5 nM for Bai, Que, Wog, Ast, Pue and Rut, respectively. The unique recognition ability of boric acid group enables selective and sensitive detection of flavonoid glycosides without the interference of their corresponding aglycones.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.