Exploiting unique NP1 interface: Oriented immobilization via electrostatic and affinity interactions in a tailored PDA/PEI microenvironment enhanced by concanavalin A.
{"title":"Exploiting unique NP1 interface: Oriented immobilization via electrostatic and affinity interactions in a tailored PDA/PEI microenvironment enhanced by concanavalin A.","authors":"Jinming Zhang, Jihang Zhang, Jiale Chen, Xiao Zhang, Jinglan Wu, Pengpeng Yang, Fengxia Zou, Hanjie Ying, Wei Zhuang","doi":"10.1016/j.talanta.2025.127528","DOIUrl":null,"url":null,"abstract":"<p><p>Enzyme immobilization techniques are crucial for enhancing enzyme stability and catalytic efficiency. Traditional methods such as physical adsorption and simple covalent binding often fail to maintain enzyme activity and stability. In this study, an innovative multi-level immobilization strategy was proposed to achieve efficient targeted immobilization of nuclease P1 (NP1) by fine-tuning the surface microenvironment. Molecular simulation results revealed that the distinctive electrostatic distribution and the specific placement of basic amino acids, such as lysine, on the NP1 surface caused dopamine to preferentially adsorb on areas away from NP1's active site. This selective adsorption facilitated the directed immobilization of NP1, while the positively charged environment generated by the co-deposited surface further enhanced NP1's adsorption capacity. This multilevel modification was found to significantly optimize the physicochemical environment of the immobilized surface through surface characterization and enzymatic testing. This strategy greatly improves enzyme activity (3590.0 U/mg), stability, and reusability (70 % after 10 cycles). In particular, NP1 on this surface exhibited an optimal Michaelis constant (K<sub>m</sub>) of 34.0 mM and a maximum reaction rate of 5.5 mM min<sup>-1</sup>, demonstrating the remarkable effect of the modification strategy in enhancing the enzyme catalytic performance. The present study provides an efficient and stable immobilization platform for enzyme catalytic applications by precisely modulating the surface microenvironment and the oriented immobilization strategy, which has an important potential for practical applications. This stable and reusable NP1 platform allows for efficient DNA/RNA cleavage, facilitating its application in industrial biocatalysis, biomedical enzyme-based processes, and biosensors.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127528"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.127528","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Enzyme immobilization techniques are crucial for enhancing enzyme stability and catalytic efficiency. Traditional methods such as physical adsorption and simple covalent binding often fail to maintain enzyme activity and stability. In this study, an innovative multi-level immobilization strategy was proposed to achieve efficient targeted immobilization of nuclease P1 (NP1) by fine-tuning the surface microenvironment. Molecular simulation results revealed that the distinctive electrostatic distribution and the specific placement of basic amino acids, such as lysine, on the NP1 surface caused dopamine to preferentially adsorb on areas away from NP1's active site. This selective adsorption facilitated the directed immobilization of NP1, while the positively charged environment generated by the co-deposited surface further enhanced NP1's adsorption capacity. This multilevel modification was found to significantly optimize the physicochemical environment of the immobilized surface through surface characterization and enzymatic testing. This strategy greatly improves enzyme activity (3590.0 U/mg), stability, and reusability (70 % after 10 cycles). In particular, NP1 on this surface exhibited an optimal Michaelis constant (Km) of 34.0 mM and a maximum reaction rate of 5.5 mM min-1, demonstrating the remarkable effect of the modification strategy in enhancing the enzyme catalytic performance. The present study provides an efficient and stable immobilization platform for enzyme catalytic applications by precisely modulating the surface microenvironment and the oriented immobilization strategy, which has an important potential for practical applications. This stable and reusable NP1 platform allows for efficient DNA/RNA cleavage, facilitating its application in industrial biocatalysis, biomedical enzyme-based processes, and biosensors.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.