Haiyan Zhang, Yunyun Ji, Zhongquan Jiang, Guangxin Yang, Cong Kong, Zhemin Shen, Tao Yuan, Xiaosheng Shen
{"title":"Arsenic toxicity in Antarctic krill oil and its impact on human intestinal cells.","authors":"Haiyan Zhang, Yunyun Ji, Zhongquan Jiang, Guangxin Yang, Cong Kong, Zhemin Shen, Tao Yuan, Xiaosheng Shen","doi":"10.1016/j.ecoenv.2025.117680","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic is a pervasive environmental pollutant that can bioaccumulate in Antarctic krill through the food chain, posing potential risks to human health. This study investigates the toxic effects of arsenic in Antarctic krill oil (AKO) on Caco-2 cells, focusing on oxidative stress and apoptosis induction. AKO is nutrient-rich and contains various arsenic species, including arsenite (As³⁺), arsenate (As⁵⁺), dimethyl arsinic acid (DMA), and arsenobetaine (AsB), each exhibiting different toxic potencies. Caco-2 cells were treated with arsenic standards and AKO to assess cell viability, lactate dehydrogenase (LDH) release, oxidative stress markers (superoxide dismutase [SOD], catalase [CAT], malondialdehyde [MDA], and glutathione peroxidase [GSH-Px]), reactive oxygen species (ROS) production, and apoptosis. Results demonstrated dose-dependent cytotoxicity, with As³ ⁺ being the most toxic, followed by As⁵⁺, DMA, and AsB. After 24 hours of exposure, cell viability in the high-concentration AKO group decreased to 63.95 %. Arsenic exposure elevated ROS levels, disrupted mitochondrial membrane potential, upregulated apoptosis-related genes such as Caspase-3, Caspase-9, and Bax, and downregulated the PI3K/AKT/mTOR signaling pathway. This study elucidates the mechanisms underlying arsenic toxicity in AKO and underscores its implications for food safety assessments.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"289 ","pages":"117680"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoenv.2025.117680","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Arsenic is a pervasive environmental pollutant that can bioaccumulate in Antarctic krill through the food chain, posing potential risks to human health. This study investigates the toxic effects of arsenic in Antarctic krill oil (AKO) on Caco-2 cells, focusing on oxidative stress and apoptosis induction. AKO is nutrient-rich and contains various arsenic species, including arsenite (As³⁺), arsenate (As⁵⁺), dimethyl arsinic acid (DMA), and arsenobetaine (AsB), each exhibiting different toxic potencies. Caco-2 cells were treated with arsenic standards and AKO to assess cell viability, lactate dehydrogenase (LDH) release, oxidative stress markers (superoxide dismutase [SOD], catalase [CAT], malondialdehyde [MDA], and glutathione peroxidase [GSH-Px]), reactive oxygen species (ROS) production, and apoptosis. Results demonstrated dose-dependent cytotoxicity, with As³ ⁺ being the most toxic, followed by As⁵⁺, DMA, and AsB. After 24 hours of exposure, cell viability in the high-concentration AKO group decreased to 63.95 %. Arsenic exposure elevated ROS levels, disrupted mitochondrial membrane potential, upregulated apoptosis-related genes such as Caspase-3, Caspase-9, and Bax, and downregulated the PI3K/AKT/mTOR signaling pathway. This study elucidates the mechanisms underlying arsenic toxicity in AKO and underscores its implications for food safety assessments.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.