Lisa M S Stiegler, K David Wegner, Florian Weigert, Wolfgang Peukert, Ute Resch-Genger, Johannes Walter
{"title":"Analysis of Giant-Shell CdSe/CdS Quantum Dots via Analytical Ultracentrifugation Combined with Spectrally Resolved Photoluminescence.","authors":"Lisa M S Stiegler, K David Wegner, Florian Weigert, Wolfgang Peukert, Ute Resch-Genger, Johannes Walter","doi":"10.1002/smtd.202401700","DOIUrl":null,"url":null,"abstract":"<p><p>Knowledge of the structure-property relationships of functional nanomaterials, including, for example, their size- and composition-dependent photoluminescence (PL) and particle-to-particle variations, is crucial for their design and reproducibility. Herein, the Angstrom-resolution capability of an analytical ultracentrifuge combined with an in-line multiwavelength emission detection system (MWE-AUC) for measuring the sedimentation coefficient-resolved spectrally corrected PL spectra of dispersed nanoparticles is demonstrated. The capabilities of this technique are shown for giant-shell CdSe/CdS quantum dots (g-QDs) with a PL quantum yield (PL QY) close to unity capped with oleic acid and oleylamine ligands. The MWE-AUC PL measurements are calibrated and validated with certified fluorescence standards. The spectrally corrected and size-dependent PL spectra of the g-QDs derived from a single MWE-AUC experiment are then analyzed and compared with the results of single-particle spectroscopic studies, yielding the PL spectra, decay kinetics, and blinking behavior of individual g-QDs. This study underlines the vast potential of MWE-AUC with in-line optical detection for the characterization of advanced nanomaterials with a complex structure.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401700"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401700","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge of the structure-property relationships of functional nanomaterials, including, for example, their size- and composition-dependent photoluminescence (PL) and particle-to-particle variations, is crucial for their design and reproducibility. Herein, the Angstrom-resolution capability of an analytical ultracentrifuge combined with an in-line multiwavelength emission detection system (MWE-AUC) for measuring the sedimentation coefficient-resolved spectrally corrected PL spectra of dispersed nanoparticles is demonstrated. The capabilities of this technique are shown for giant-shell CdSe/CdS quantum dots (g-QDs) with a PL quantum yield (PL QY) close to unity capped with oleic acid and oleylamine ligands. The MWE-AUC PL measurements are calibrated and validated with certified fluorescence standards. The spectrally corrected and size-dependent PL spectra of the g-QDs derived from a single MWE-AUC experiment are then analyzed and compared with the results of single-particle spectroscopic studies, yielding the PL spectra, decay kinetics, and blinking behavior of individual g-QDs. This study underlines the vast potential of MWE-AUC with in-line optical detection for the characterization of advanced nanomaterials with a complex structure.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.